Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Virology ; (6): 389-393, 2007.
Article in Chinese | WPRIM | ID: wpr-334877

ABSTRACT

The E2 envelope glycoprotein of virulent Shimen strain and avirulent C-strain of Classical swine fever virus (CSFV) has 5 and 6 potential glycosylation sites, respectively, and the potential glycosylation site 986N is unique to C-strain. To study the differences in glycosylation between the virus pair, the E2 genes (removing signal sequence and transmembrane anchor regions) of the two strains fused with the melittin signal sequence were expressed in the Sf9 insect cells. The recombinant E2 proteins were secreted into the medium of Sf9 cells in dimer form with different molecular weight (MW). Deglycosylation of the recombinant E2 proteins by endo H and PNGase F showed that the deglycosalated Shimen-E2 and HCLV-E2 have the same MW, indicating that the different MW between Shimen-E2 and HCLV-E2 proteins came from different glycosylation. Site-directed mutagenesis in the potential glycosylation site at 986N demonstrated that the mutated Shimen-E2 protein had the same MW as the wild-type HCLV-E2 protein, while the mutated HCLV-E2 had the same MW as the wild-type Shimen-E2 protein. We suggest that the different MW between Shimen-E2 and HCLV-E2 is resulted from the different glycosylation on 986 N glycosylation site.


Subject(s)
Baculoviridae , Genetics , Blotting, Western , Classical Swine Fever Virus , Chemistry , Classification , Glycosylation , Molecular Weight , Mutation , Recombinant Proteins , Chemistry , Viral Envelope Proteins , Chemistry , Virulence
2.
China Biotechnology ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-685260

ABSTRACT

The baculovirus expression system has been used extensively for the expression of recombinant proteins in insect cells.Recently,recombinant baculoviruses containing mammalian cell-active promoter element have been used to transduce a broad spectrum of primary and established mammalian cells,including non-hepatic cells.Recombinant baculoviruses have been used successfully for transient or stable gene delivery in mammalian cells in vitro,while the efficiency of delivering gene in vivo is inhibited obviously by complements,but efforts have been made to overcome the problems,for instance,VSV-G-pseudotyped baculoviruses display complement resistance.The mechanism of the transduction is still not clearly understood,though many researches have been done.The baculovirus is able to replicate only in insect cells,but it is incapable of initiating replication cycle in mammalian cells,which guarantees high biosafety of this gene delivery system.In addition,this system is easily manipulated and able to carry large inserts.These attributes will undoubtedly lead to the increased application and continued development of this system for highly effective gene delivery into mammalian cells.

SELECTION OF CITATIONS
SEARCH DETAIL