Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 913-921, 2022.
Article in Chinese | WPRIM | ID: wpr-928009

ABSTRACT

Emodin nanostructured lipid carriers(ED-NLC) were prepared and their quality was evaluated in vitro. Based on the results of single-factor experiments, the ED-NLC formulation was optimized by Box-Behnken response surface method with the dosages of emodin, isopropyl myristate and poloxamer 188 as factors and the nanoparticle size, encapsulation efficiency and drug loading as evaluation indexes. Then the evaluation was performed on the morphology, size and in vitro release of the nanoparticles prepared by emulsification-ultrasonic dispersion method in line with the optimal formulation, i.e., 3.27 mg emodin, 148.68 mg isopropyl myristate and 173.48 mg poloxamer 188. Under a transmission electron microscope(TEM), ED-NLC were spherical and their particle size distribution was uniform. The particle size of ED-NLC was(97.02±1.55) nm, the polymer dispersion index 0.21±0.01, the zeta potential(-38.96±0.65) mV, the encapsulation efficiency 90.41%±0.56% and the drug loading 1.55%±0.01%. The results of differential scanning calorimeter(DSC) indicated that emodin may be encapsulated into the nanostructured lipid carriers in molecular or amorphous form. In vitro drug release had obvious characteristics of slow release, which accorded with the first-order drug release equation. The fitting model of Box-Behnken response surface methodology was proved accurate and reliable. The optimal formulation-based ED-NLC featured concentrated particle size distribution and high encapsulation efficiency, which laid a foundation for the follow-up study of ED-NLC in vivo.


Subject(s)
Drug Carriers , Emodin , Follow-Up Studies , Lipids , Nanostructures
2.
China Journal of Chinese Materia Medica ; (24): 4621-4626, 2019.
Article in Chinese | WPRIM | ID: wpr-1008237

ABSTRACT

In this study,a nano drug delivery system GA-DTX-NGO which could be used for liver tumor photothermal and chemotherapy was prepared and characterized,with docetaxel(DTX) as model drug,glycyrrhetinic acid(GA) as the target molecule,and nano graphene oxide(NGO) as the photosensitizer. Firstly,GA-NGO nanocomposites were synthesized by the amidation reaction,and then GA-DTX-NGO was prepared by ultrasonic dispersion method. The encapsulation efficiency and drug loading ratio were determined by high performance liquid chromatography(HPLC) and ultracentrifugation; the morphology was observed by transmission electron microscopy(TEM). The photothermal conversion test was carried out by laser irradiation at 808 nm and the drug release test in vitro was performed using reverse dialysis. Finally,the effect of GA-DTX-NGO on SMMC-7721 liver tumor cells proliferation was determined by using MTT assay. The results showed that GA-DTX-NGO had good water dispersibility,and TEM results showed a lamellar structure with about 200 nm in diameter. The encapsulation efficiency and drug loading ratio of GA-DTX-NGO were(98. 89 ± 0. 07) % and(64. 74±0. 26) %,respectively. GA-DTX-NGO had strong photothermal conversion performance under 808 nm of laser irradiation. The drug release test in vitro results showed GA-DTX-NGO had obvious sustained-release effects and temperature-dependent release characteristics. The results of cell assay showed that GA-DTX-NGO could effectively inhibit the proliferation of SMMC 7721 cells in a concentration-and time-dependent manner,and the inhibitory effect was enhanced after combination with the near-infrared therapy. In conclusion,the preparation process of GA-DTX-NGO nano drug delivery system is feasible,which could provide some theoretical basis for further study of photothermal and chemotherapy on liver tumor.


Subject(s)
Antineoplastic Agents , Drug Carriers , Drug Delivery Systems , Glycyrrhetinic Acid , Graphite
SELECTION OF CITATIONS
SEARCH DETAIL