Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Biomedical and Environmental Sciences ; (12): 338-349, 2020.
Article in English | WPRIM | ID: wpr-829007

ABSTRACT

Objective@#To observe the dynamic impacts of shock waves on the severity of lung injury in rats with different injury distances.@*Methods@#Simulate open-field shock waves; detect the biomechanical effects of explosion sources at distances of 40, 44, and 48 cm from rats; and examine the changes in the gross anatomy of the lungs, lung wet/dry weight ratio, hemoglobin concentration, blood gas analysis, and pathology.@*Results@#Biomechanical parameters such as the overpressure peak and impulse were gradually attenuated with an increase in the injury distance. The lung tissue hemorrhage, edema, oxygenation index, and pathology changed more significantly for the 40 cm group than for the 44 and 48 cm groups. The overpressure peak and impulse were significantly higher for the 40 cm group than for the 44 and 48 cm groups ( < 0.05 or < 0.01). The animal mortality was significantly higher for the 40 cm group than for the other two groups (41.2% . 17.8% and 10.0%, < 0.05). The healing time of injured lung tissues for the 40 cm group was longer than those for the 44 and 48 cm groups.@*Conclusions@#The effects of simulated open-field shock waves on the severity of lung injuries in rats were correlated with the injury distances, the peak overpressure, and the overpressure impulse.


Subject(s)
Animals , Male , Rats , Biomechanical Phenomena , Blast Injuries , Pathology , Disease Models, Animal , Explosions , Lung Injury , Pathology , Random Allocation , Rats, Sprague-Dawley
2.
Chinese Journal of Hematology ; (12): 41-46, 2018.
Article in Chinese | WPRIM | ID: wpr-1011684

ABSTRACT

Objective: To explore effects of histone deacetylase inhibitor Belinostat on the immunologic function of dendritic cells (DC) and its possible mechanism. Methods: Cultured mouse bone marrow-derived DC from C57BL/6 mouse in vitro. The experiments were divided into 0, 50, 100 nmol/L Belinostat + immature DC (imDC) group, and 0, 50, 100 nmol/L Belinostat mature DC (mDC). The changes of the ultrastructure of DC were observed by transmission electron microscope (TEM). Immunophenotype and CCR7 expression rate were detected by FCM, and the migration rate was observed by chemotaxis assay. The proliferation of lymphocytes stimulated by different DC was detected by mixed lymphocyte culture reaction. The cytokines in the culture supernatant, including TNF-α, IL-12 and IL-10, were examined by ELISA. RQ-PCR was used to examine the relative expression of mRNA in RelB. Results: Successful cultured and identified the qualified imDC and mDC. Belinostat decreased the expression of CCR7 on imDC [(25.82±7.25)% vs (50.44±5.61)% and (18.71±2.00)% vs (50.44±5.61)%], meanwhile increased the rate on mDC [(71.14±1.96)% vs (64.90±1.47)%]. Chemotaxis assay showed that the migration rate of Belinostat+imDC and Belinostat+mDC group were both decreased, but the difference in imDC was not significant. T lymphocyte proliferation rate stimulated by 100 nmol/L Belinostat+imDC group was lower than imDC group in condition irritation cell∶reaction cell=1∶2 [(227.09±13.49)% vs (309.49±53.69)%]. Belinostat significantly suppressed the secretion of cytokines TNF-α, IL-12 and IL-10 (all P<0.01). The relative expression of mRNA in RelB was slightly decreased in Belinostat+imDC and Belinostat+mDC group (all P<0.05). Conclusion: Belinostat could effectly suppress DC maturation and regulate immune tolerance of DC, which may be due to the down-regulation of mRNA level of RelB in DC.


Subject(s)
Animals , Mice , Cells, Cultured , Dendritic Cells , Histone Deacetylase Inhibitors , Hydroxamic Acids , Mice, Inbred C57BL , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL