Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Herbal Medicines ; (4): 228-234, 2021.
Article in Chinese | WPRIM | ID: wpr-953658

ABSTRACT

Objective: In order to elucidate the biological activity of the co-cultured adventitious roots (ARs) of Echinacea pallida and Echinacea purpurea and provide theoretical basis for its application, and the anti-inflammatory activities and potential mechanisms of co-cultured ARs were studied. Methods: The experimental materials were obtained by bioreactor co-culture technology and used in the activity research. In this study, mouse macrophages induced by lipopolysaccharide (LPS) were used as in vitro model. Different concentrations of AR extract (50–400 g/mL) were used to treat cells. The expression of pro-inflammatory cytokines was determined using enzyme linked immunosorbent assay. The inducible nitric oxide synthase and cyclooxygenase-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, and the inhibitor of nuclear factor-kappa B-α levels were determined by the Western blot analysis. Results: In the co-cultured ARs, total flavonoids and total caffeic acid were determined, and the contents of both bioactive compounds were significantly higher than those ARs from the single-species culture. Compared with the control group, the large amount of pro-inflammatory mediators was released after LPS stimulation. However, in the extract groups with different concentrations (25, 50, and 100 g/mL), the production of these pro-inflammatory mediators was inhibited in a dose-dependent manner. Furthermore, the levels of phosphorylation of MAPK proteins, including p-p38, p-c-Jun N-terminal kinase, and p-extracellular regulated protein kinases were significantly (P < 0.05) decreased in the extract groups, revealing that the AR extract probably involved in regulating the MAPK signaling pathway. Conclusion: Collectively, our findings suggested that the co-cultured ARs of E. pallida and E. purpurea can inhibit production of pro-inflammatory mediators in mouse peritoneal macrophages and possess the anti-inflammatory effect by regulating MAPK signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL