Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
China Journal of Chinese Materia Medica ; (24): 3360-3372, 2023.
Article in Chinese | WPRIM | ID: wpr-981472

ABSTRACT

UPLC-Q-Exactive-MS/MS and network pharmacology were employed to preliminarily study the active components and mechanism of Jinwugutong Capsules in the treatment of osteoporosis. Firstly, UPLC-Q-Exactive-MS/MS was employed to characterize the chemical components of Jinwugutong Capsules, and network pharmacology was employed to establish the "drug-component-target-pathway-disease" network. The key targets and main active components were thus obtained. Secondly, AutoDock was used for the molecular docking between the main active components and key targets. Finally, the animal model of osteoporosis was established, and the effect of Jinwugutong Capsules on the expression of key targets including RAC-alpha serine/threonine-protein kinase(AKT1), albumin(ALB), and tumor necrosis factor-alpha(TNF-α) was determined by enzyme-linked immunosorbent assay(ELISA). A total of 59 chemical components were identified from Jinwugutong Capsules, among which coryfolin, 8-prenylnaringenin, demethoxycurcumin, isobavachin, and genistein may be the main active components of Jinwugutong Capsules in treating osteoporosis. The topological analysis of the protein-protein interaction(PPI) network revealed 10 core targets such as AKT1, ALB, catenin beta 1(CTNNB1), TNF, and epidermal growth factor receptor(EGFR). The Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment showed that Jinwugutong Capsules mainly exerted the therapeutic effect by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, neuroactive ligand-receptor interaction, mitogen-activated protein kinase(MAPK) signaling pathway, Rap1 signaling pathway and so on. Molecular docking showed that the main active components of Jinwugutong Capsules well bound to the key targets. ELISA results showed that Jinwugutong Capsules down-regulated the protein levels of AKT1 and TNF-α and up-regulated the protein level of ALB, which preliminarily verified the reliability of network pharmacology. This study indicates that Jinwugutong Capsules may play a role in the treatment of osteoporosis through multiple components, targets, and pathways, which can provide reference for the further research.


Subject(s)
Animals , Tumor Necrosis Factor-alpha/genetics , Network Pharmacology , Capsules , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Reproducibility of Results , Tandem Mass Spectrometry
2.
Chinese Journal of Contemporary Pediatrics ; (12): 797-805, 2022.
Article in Chinese | WPRIM | ID: wpr-939665

ABSTRACT

OBJECTIVES@#To study the association of maternal methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) gene polymorphisms with congenital heart disease (CHD) in offspring.@*METHODS@#A hospital-based case-control study was conducted. The mothers of 683 children with CHD alone who attended Hunan Children's Hospital, from November 2017 to March 2020 were enrolled as the case group, and the mothers of 740 healthy children who attended the same hospital during the same period and did not have any deformity were enrolled as the control group. A questionnaire survey was performed to collect related exposure data, and then venous blood samples (5 mL) were collected from the mothers to detect MTHFD1 and MTHFD2 gene polymorphisms. A multivariate logistic regression analysis was used to evaluate the association of MTHFD1 and MTHFD2 gene polymorphisms with CHD. The four-gamete test in Haploview 4.2 software was used to construct haplotypes and evaluate the association between haplotypes and CHD. The generalized multifactor dimensionality reduction method and logistic regression analysis were used to examine gene-gene interaction and its association with CHD.@*RESULTS@#The multivariate logistic regression analysis showed that maternal MTHFD1 gene polymorphisms at rs11849530 (GA vs AA: OR=1.49; GG vs AA: OR=2.04) andat rs1256142 (GA vs GG: OR=2.34; AA vs GG: OR=3.25) significantly increased the risk of CHD in offspring (P<0.05), while maternal MTHFD1 gene polymorphisms at rs1950902 (AA vs GG: OR=0.57) and MTHFD2 gene polymorphisms at rs1095966 (CA vs CC: OR=0.68) significantly reduced the risk of CHD in offspring (P<0.05). The haplotypes of G-G-G (OR=1.86) and G-A-G (OR=1.35) in mothers significantly increased the risk of CHD in offspring (P<0.05). The gene-gene interaction analyses showed that the first-order interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and the second-order interaction involving MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966 might be associated with risk of CHD (P<0.05).@*CONCLUSIONS@#Maternal MTHFD1 and MTHFD2 gene polymorphisms and their haplotypes, as well as the interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and between MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966, are associated with the risk of CHD in offspring.


Subject(s)
Child , Female , Humans , Aminohydrolases/genetics , Case-Control Studies , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Minor Histocompatibility Antigens/genetics , Mothers , Multifunctional Enzymes/genetics , Polymorphism, Single Nucleotide , Risk Factors
3.
China Journal of Chinese Materia Medica ; (24): 5278-5283, 2021.
Article in Chinese | WPRIM | ID: wpr-921673

ABSTRACT

Triptolide(TP), the main active and toxic component of Tripterygium wilfordii, has the limitations of low bioavailability, poor absorption, low concentration in plasma, and small lethal dose. Microneedle(MN), the hybrid of hypodermic needle and transdermal patch, is a physical penetration-enhancing system. Dissolving microneedles(DMNs) can be tailored to specific needs of degradation rate. In this study, the TP-loaded DMNs(DMNs-TP) were prepared with the two-step centrifugation method. The optimal ratio of PVA to PVP K30, water content in matrix solution, demoulding method, and plasticizer for preparing DMNs were investigated with the indexes of formability and mechanical strength. The drug loading capacity was determined by HPLC and morphological characteristics were observed under an optical microscope. The mechanical properties were investigated by H&E staining and Franz diffusion cell was used to detect the in vitro skin permeation characteristics. Through the experiment, we confirmed that the optimal backing material should be PVA and PVP K30(3∶1) and the optimal ratio of matrix material to water should be 3∶4. The prepared DMNs-TP were pyramidal with smooth surface and length of approximately 550 μm. Each patch(2.75 cm~2) had the drug loading capacity of(153.41±2.29) μg, and TP was located in the upper part of the needle. The results of in vitro skin permeation assay demonstrated that the cumulative penetration of TP in DMNs-TP reached 80% in 24 h, while little TP solution penetrated the skin, which proved that DMNs promoted the transdermal delivery of TP.


Subject(s)
Administration, Cutaneous , Diterpenes , Drug Delivery Systems , Epoxy Compounds , Needles , Phenanthrenes , Skin
SELECTION OF CITATIONS
SEARCH DETAIL