Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 37(6): e370603, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402964

ABSTRACT

Purpose: To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. Methods: TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. Results: After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. Conclusions: This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Neuroprotective Agents/administration & dosage , Brain Injuries, Traumatic/therapy , Rats, Sprague-Dawley , Medicine, Chinese Traditional
2.
J Cancer Res Ther ; 2019 Apr; 15(2): 286-290
Article | IMSEAR | ID: sea-213611

ABSTRACT

Objective: The objective of this study is to evaluate the feasibility and safety of high-intensity focused ultrasound (HIFU) for ablation of swine pancreas and to detect the pathological variations in pancreas damage. Materials and Methods: (a) Eight swine were involved and randomly divided into two groups (Group A and B). HIFU was applied on swine in both groups for in vivo ablation of pancreas. The animals were anesthetized, and the artificial acoustic window was built. Then, the irradiation of FEP-BY02 type HIFU on pancreas was applied. (b) Swine in Group A were euthanized immediately after treating with HIFU to examine variations in pancreas. The biochemical evidence of pancreatitis was evaluated by blood samples collected from swine in Group B before and after HIFU. Then, the pancreas of swine in Group B was euthanized on day 5 after treatment to examine the pancreas. All specimens were visually inspected for both ultrasonic focal damage region (UFDR) and pathological routine by a skilled pathologist. Results: (a) The vital signs of all animals were stable during HIFU treatment and recovered well after treatment. (b) UFDR were observed in all HIFU irradiation region of the specimens, without significant size difference between the two groups. The coagulation nucleus pyknosis, cytochylema vacuolation, and nucleus membrane disruption were observed after HIFU in both groups. Membranous structure dissolution and inflammatory cell infiltration were also found after HIFU in swine of Group B. (c) There was no significant difference in the levels of blood amylase in swine of Group B before and after HIFU treatment. Conclusions: It was feasible and safe to use HIFU for ablation of the pancreas in swine

SELECTION OF CITATIONS
SEARCH DETAIL