Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 783-786, 2013.
Article in Chinese | WPRIM | ID: wpr-275813

ABSTRACT

<p><b>OBJECTIVE</b>To establish a highly sensitive fluorometric nanobiosensor for determination of aqueous mercury ions (Hg(2+)) using optimized mercury-specific oligonucleotide (MSO) probes and graphene oxide (GO).</p><p><b>METHODS</b>The nanobiosensor was assembled by attaching the self-designed MSO(1) (5' end labeled with fluorophore carboxyfluorescein (FAM), denoted as FAM-MSO(1)) and MSO(2) to the surface of GO through strong non-covalent bonding forces. Upon the addition of Hg(2+), the formation of the T-Hg(2+)-T configuration desorbed the FAM-MSO(1) and MSO(2) from the surface of GO, resulting in a restoration of the fluorescence of FAM-MSO(1). Using the specific mispairing of T-Hg(2+)-T and the changes in fluorescent signals in solutions, quantitative analysis of Hg(2+) could be performed.</p><p><b>RESULTS</b>The average thickness of the prepared GO sheets was only 1.4 nm. For the Hg(2+) nanobiosensor, the optimum concentrations of FAM-MSO(1) and MSO(2) were both 1 µmol/L, the optimum volume of 0.5 g/L GO was 5 µL, and the limit of detection was 10 pmol/L; it had low cross-reactivity with 10 other kinds of non-specific metal ions; the fluorescence recovery efficiency was up to 65% in the re-determination of Hg(2+) after addition of Na(2)S(2)O(3).</p><p><b>CONCLUSION</b>The MSO/GO-based nanobiosensor is convenient to operate, highly sensitive, highly specific, highly accurate, and reusable. It can be applied to determine trace amount of Hg(2+) in aqueous solutions.</p>


Subject(s)
Biosensing Techniques , Fluorometry , Graphite , Mercury , Nanotechnology , Oligonucleotide Probes , Water
2.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 536-539, 2012.
Article in Chinese | WPRIM | ID: wpr-324199

ABSTRACT

<p><b>OBJECTIVE</b>To develop a nanobiosensor for rapid colorimetric detecting Mercury (II) Ions (Hg(2+)) in water by mercury-specific oligonucleotides (MSOs) probe and gold nanoparticles.</p><p><b>METHODS</b>The nanobiosensor was assembled by adsorbing the optimized MSOs on the surface of gold nanoparticles. A direct colorimetric probe of Hg(2+) which relied on the T-T mismatches in DNA duplexes was used to selectively and strongly capture Hg(2+). Hg(2+) induces the aggregation of gold nanoparticles with appropriate amount of salts, resulting the color change (red to blue).</p><p><b>RESULTS</b>The diameter and concentration of the gold nanoparticle preparation were 15 nm and 2.97 nmol/L, respectively. Truncated MSOs (9 bp) showed the similar Hg(2+)-binding activity. The optimum concentration of the NaNO3 solution was 0.5 mol/L. The nanobiosensor could detect Hg(2+)in a range of 10 ∼ 1000 µmol/L within few minutes and the specificity was 100%.</p><p><b>CONCLUSION</b>A new nanobiosensor is developed successfully for rapid colorimetric detecting Hg(2+) in water, avoiding either MSOs labeling or gold nanoparticles modification. This technique is simple, convenient and rapid detecting method with high sensitivity and specificity.</p>


Subject(s)
Biosensing Techniques , Methods , Ions , Mercury , Metal Nanoparticles , Water
SELECTION OF CITATIONS
SEARCH DETAIL