Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 529
Filter
1.
China Pharmacy ; (12): 712-717, 2024.
Article in Chinese | WPRIM | ID: wpr-1013107

ABSTRACT

OBJECTIVE To investigate the effect and mechanism of Astragalus polysaccharide (APS) on peritoneal fibrosis and angiogenesis in rats with peritoneal dialysis (PD). METHODS Rats were randomly divided into normal control group (Control group), model group (PD group), 70 mg/kg APS group (APS-L group), 140 mg/kg APS group (APS-H group), and 140 mg/kg APS+40 mg/kg hypoxia-inducible factor-1α (HIF-1α) agonist DMOG group (APS-H+DMOG group), with 12 rats in each group. PD rat models were constructed in the last four groups of rats. Administration groups were given APS intragastrically and DMOG intraperitoneally. Control group and PD group were given constant volume of normal saline intragastrically, once a day, for 4 consecutive weeks. After the last medication, the peritoneal ultrafiltration (UF), mass transfer of glucose (MTG), the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were detected in rats; peritoneal histomorphology and peritoneal fibrosis (peritoneal thickness and proportion of collagen fiber deposition) were observed; the microvascular density and the expression levels of α-smooth muscle actin (α-SMA), laminin (LN), HIF-1α and vascular endothelial growth factor (VEGF) proteins were detected in peritoneal tissue of rats. RESULTS Compared with Control group, the mesothelium of rats in the PD group was loosely arranged and shed, inflammatory cells infiltrated, the peritoneal thickness and proportion of collagen fiber deposition were increased significantly (P<0.05). The levels of MTG, Scr and BUN in serum, microvascular density and the expressions of α-SMA, LN, HIF-1α and VEGF proteins were significantly increased, while the level of UF was significantly decreased (P< 0.05); compared with PD group, the levels of above indexes were significantly reversed in APS-L and APS-H groups (P<0.05), and the improvement of APS-H group was better than APS-L group (P<0.05). Compared with APS-H group, the levels of above indexes in APS-H+DMOG group were all reversed (P<0.05). CONCLUSIONS APS inhibits peritoneal fibrosis and angioge-nesis in PD rats by inhibiting HIF-1α/VEGF signaling pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 40-48, 2024.
Article in Chinese | WPRIM | ID: wpr-1011441

ABSTRACT

ObjectiveTo induce the rat model of ulcerative colitis (UC) with spleen-kidney Yang deficiency and liver depression, and explore the efficacy and mechanism of Sishenwan combined with Tongxie Yaofang (SSW&TXYF) based on the therapeutic principles of tonifying spleen, soothing liver, warming kidney, and astringing intestine. MethodSixty male SD rats were randomized into normal, model, mesalazine, and high-, medium-, and low-dose SSW&TXYF groups. The rats in other groups except the normal group were administrated with Sennae Folium decoction and hydrocortisone and received tail clamping for 14 days. On day 14, rats received enema with TNBS-ethanol solution to induce UC. The rats were administrated with corresponding drugs from day 15 of modeling, and the body weight and mental state were observed and recorded. The sucrose preference test was performed from day 25. On day 28, the rectal temperature was measured, and the rats were administrated with 3% D-xylose solution at a dose of 10 mL·kg-1 by gavage. Blood was sampled 1 h later, from which the serum was collected for measurement of the D-xylose content. The serum, hippocampus, and colorectum samples of rats were collected on day 29. The levels of gastrin (GAS), adrenocorticotropic hormone (ACTH), corticosterone (CORT), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), interleukin (IL)-4, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the serum and 5-hydroxytryptamine (5-HT) in the hippocampus were determined by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was employed to reveal the colonic lesions. The mRNA and protein levels of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in the colon tissue were determined by Real-time PCR and Western blot, respectively. ResultCompared with the normal group, the model group showed decreased body weight, anal temperature, and D-xylose content in the serum and increased GAS content (P<0.01). The modeling led to cAMP/cGMP unbalance and decreased the ACTH and CORT content in the serum (P<0.01), the preference for sucrose water, and the 5-HT content in the hippocampus (P<0.01). Moreover, it shortened the colorectal length and caused massive infiltration of inflammatory cells and severe structural damage in the colon tissue. High, medium, and low doses of SSW&TXYF improved above indicators (P<0.05, P<0.01), reduced inflammatory infiltration, and repaired the pathological damage of the tissue. Compared with the normal group, the model group showed lowered IL-4 level (P<0.01) and elevated TNF-α and IFN-γ levels (P<0.05, P<0.01) in the serum, as well as up-regulated expression of p38 MAPK, ERK, and JNK (P<0.05, P<0.01). Compared with the model group, SSW&TXYF elevated the IL-4 level (P<0.01), lowered the TNF-α and IFN-γ levels (P<0.05, P<0.01), and down-regulated the mRNA and protein levels of p38 MAPK, ERK, and JNK (P<0.05, P<0.01). ConclusionA rat model of UC with spleen-kidney Yang deficiency and liver depression was successfully established. SSW&TXYF can significantly mitigate this syndrome by reducing the inflammatory response in the colon and inhibiting the MAPK pathway.

3.
Acta Pharmaceutica Sinica ; (12): 35-42, 2024.
Article in Chinese | WPRIM | ID: wpr-1005437

ABSTRACT

Sesquiterpenoids are widely found in nature, while nitrobenzoyl sesquiterpenoids are relatively rare. Twelve natural nitrobenzoyl sesquiterpenoids were all derived from marine Aspergillus fungi, which are typical natural products with marine characteristics. These natural products exhibit good antitumor, antiviral, and inhibition of osteoclast differentiation activity, especially in the treatment of osteoclast-related diseases, showing good medicinal development value. This article reviews the natural product sources, chemical structure, chemical synthesis, biosynthesis, bioactivity, and pharmacological mechanisms of nitrobenzoyl sesquiterpenoids and predicts and discusses their absorption, distribution, metabolism, excretion, toxicity (ADME/T), and drug-likeness, providing a comprehensive understanding of the natural products of nitrobenzoyl sesquiterpenoids from marine sources and their potential for pharmaceutical development.

4.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1562-1568, 2023.
Article in Chinese | WPRIM | ID: wpr-1015655

ABSTRACT

Xenotransplantation holds the promise of being used to address the imbalance between organ supply and demand for clinical transplantation. Pigs have natural features that make them more suitable donors for transplant organs than non-human primates. A series of biological barriers that arise after pig organ transplantation have been overcome by genetic engineering and pharmacological suppression. Mean- while, the gradual maturity of the genetic engineering technology has been significantly optimized for suit- able pigs for xenotransplantation, and promoted the development of pig organ transplantation research. Although it will take time for pig organ xenotransplantation to enter the clinical trial stage, recent studies conducted in a few brain-dead or critically ill patients have exhibited the great potential of porcine xeno- transplantation in solving the imbalance between supply and demand of organs for clinical transplantation.

5.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 972-979, 2023.
Article in Chinese | WPRIM | ID: wpr-1015596
6.
Chinese Pharmacological Bulletin ; (12): 622-626, 2023.
Article in Chinese | WPRIM | ID: wpr-1013806

ABSTRACT

Coronavirus disease-19 (COVID-19), a global epidemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lead to lung injury in millions of people. SARS-CoV-2 can not only cause cytokine storm, acute respiratory distress syndrome and respiratory failure in the phase of acute infection, but also have potential long-term effects on the lungs. Survivors of severe COVID-19 may develop pulmonary fibrosis, resulting in permanent lung injury. In this review we expound the occurrence and development of COVID-19-related pulmonary fibrosis, summarize the key roles of TGF-p/Smad, TGF-fV MAPK, JAK/STAT, Wnt/(3-catenin, YAP/TAZ, NF-KB and PI3K/Akt signal pathways in this process, and analyze the advantages and disadvantages of antiviral drugs, anti-fibrosis drugs, cytokine-targeted drugs, corticosteroids, spironolactone, traditional Chinese medicine prescriptions and lung transplantation in its treatment. This review may provide a reference for the study of pathological mechanism and clinical treatment of COVID-19-re-lated pulmonary fibrosis.

7.
Biomedical and Environmental Sciences ; (12): 253-268, 2023.
Article in English | WPRIM | ID: wpr-970314

ABSTRACT

OBJECTIVE@#Arsenic (As) and fluoride (F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level (microbiome and metabolome).@*METHODS@#We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.@*RESULTS@#Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome,featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic (GABAergic) synapse, and arachidonic acid (AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.@*CONCLUSION@#Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.


Subject(s)
Rats , Animals , Arsenic/toxicity , Fluorides , RNA, Ribosomal, 16S/genetics , Rats, Sprague-Dawley , Metabolome , Microbiota
8.
Chinese Journal of Pediatrics ; (12): 29-35, 2023.
Article in Chinese | WPRIM | ID: wpr-970232

ABSTRACT

Objective: To analyze the prevalence and the risk factors of fungal sepsis in 25 neonatal intensive care units (NICU) among preterm infants in China, and to provide a basis for preventive strategies of fungal sepsis. Methods: This was a second-analysis of the data from the "reduction of infection in neonatal intensive care units using the evidence-based practice for improving quality" study. The current status of fungal sepsis of the 24 731 preterm infants with the gestational age of <34+0 weeks, who were admitted to 25 participating NICU within 7 days of birth between May 2015 and April 2018 were retrospectively analyzed. These preterm infants were divided into the fungal sepsis group and the without fungal sepsis group according to whether they developed fungal sepsis to analyze the incidences and the microbiology of fungal sepsis. Chi-square test was used to compare the incidences of fungal sepsis in preterm infants with different gestational ages and birth weights and in different NICU. Multivariate Logistic regression analysis was used to study the outcomes of preterm infants with fungal sepsis, which were further compared with those of preterm infants without fungal sepsis. The 144 preterm infants in the fungal sepsis group were matched with 288 preterm infants in the non-fungal sepsis group by propensity score-matched method. Univariate and multivariate Logistic regression analysis were used to analyze the risk factors of fungal sepsis. Results: In all, 166 (0.7%) of the 24 731 preterm infants developed fungal sepsis, with the gestational age of (29.7±2.0) weeks and the birth weight of (1 300±293) g. The incidence of fungal sepsis increased with decreasing gestational age and birth weight (both P<0.001). The preterm infants with gestational age of <32 weeks accounted for 87.3% (145/166). The incidence of fungal sepsis was 1.0% (117/11 438) in very preterm infants and 2.0% (28/1 401) in extremely preterm infants, and was 1.3% (103/8 060) in very low birth weight infants and 1.7% (21/1 211) in extremely low birth weight infants, respectively. There was no fungal sepsis in 3 NICU, and the incidences in the other 22 NICU ranged from 0.7% (10/1 397) to 2.9% (21/724), with significant statistical difference (P<0.001). The pathogens were mainly Candida (150/166, 90.4%), including 59 cases of Candida albicans and 91 cases of non-Candida albicans, of which Candida parapsilosis was the most common (41 cases). Fungal sepsis was independently associated with increased risk of moderate to severe bronchopulmonary dysplasia (BPD) (adjusted OR 1.52, 95%CI 1.04-2.22, P=0.030) and severe retinopathy of prematurity (ROP) (adjusted OR 2.55, 95%CI 1.12-5.80, P=0.025). Previous broad spectrum antibiotics exposure (adjusted OR=2.50, 95%CI 1.50-4.17, P<0.001), prolonged use of central line (adjusted OR=1.05, 95%CI 1.03-1.08, P<0.001) and previous total parenteral nutrition (TPN) duration (adjusted OR=1.04, 95%CI 1.02-1.06, P<0.001) were all independently associated with increasing risk of fungal sepsis. Conclusions: Candida albicans and Candida parapsilosis are the main pathogens of fungal sepsis among preterm infants in Chinese NICU. Preterm infants with fungal sepsis are at increased risk of moderate to severe BPD and severe ROP. Previous broad spectrum antibiotics exposure, prolonged use of central line and prolonged duration of TPN will increase the risk of fungal sepsis. Ongoing initiatives are needed to reduce fungal sepsis based on these risk factors.


Subject(s)
Infant , Infant, Newborn , Humans , Birth Weight , Intensive Care Units, Neonatal , Retrospective Studies , Tertiary Care Centers , Infant, Extremely Low Birth Weight , Gestational Age , Infant, Extremely Premature , Sepsis/epidemiology , Retinopathy of Prematurity/epidemiology , Bronchopulmonary Dysplasia/epidemiology
9.
Chinese Journal of Oncology ; (12): 238-252, 2023.
Article in Chinese | WPRIM | ID: wpr-969830

ABSTRACT

Objective: To explore whether hsa_circ_0000670 promotes the progression of gastric cancer by regulating the miR-515-5p/SIX1 molecular axis. Methods: The gastric cancer and adjacent normal tissues of 35 gastric cancer patients admitted to Rugao Hospital Affiliated to Nantong University from 2014 to 2015 were collected. The expression levels of circ_0000670, miR-515-5p and Sine oculis homeobox 1 (SIX1) in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The correlations between circ_0000670 and miR-515-5p, miR-515-5p and SIX1, circ_0000670 and SIX1 were analyzed by the Pearson method. Patients were divided into low circ_0000670 expression group (17 cases) and high circ_0000670 expression group (18 cases) based on the median of circ_0000670 expression level, and Kaplan-Meier was used to analyze the 5-year survival of patients. Cell proliferation was assessed via clone formation assay. Cell cycle and apoptosis were detected by flow cytometry. Wound healing and Transwell assays were used to detect cell migration and invasion ability. The targeting relationship between miR-515-5p and circ_0000670 or SIX1 was confirmed by the dual luciferase reporter assay. Nude mice were injected into HGC-27 cells transfected with sh-NC or sh-circ_0000670, and the volume and weight of the transplanted tumor were measured, also, the levels of circ_0000670, miR-515-5p and SIX1 in the transplanted tumor tissue were detected. Results: The expression levels of circ_0000670 and SIX1 in gastric cancer tissues and cell lines were significantly increased (P<0.05), while the expression levels of miR-515-5p were significantly decreased (P<0.05). The survival rate of patients in the low circ_0000670 expression group (82.4%) was significantly higher than that in the high circ_0000670 expression group (28.7%, P=0.034). Circ_0000670 was negatively correlated with miR-515-5p (r=-0.846, P<0.001), and miR-515-5p was negatively correlated with SIX1 (r=-0.615, P<0.001), but circ_0000670 was positively correlated with SIX1 (r=0.814, P<0.001). Transfection of si-circ_0000670 or miR-515-5p mimic could significantly reduce the number of clone-forming cells, migration distance, migration and invasion cells (P<0.05), and increase the ratio of G(0)/G(1) phase cells, apoptosis rate and the protein level of E-cadherin (P<0.05), decreased the proportion of S-phase cells and the protein level of Vimentin (P<0.05). The dual luciferase report assay confirmed that circ_0000670 could target miR-515-5p, and miR-515-5p could bind to SIX1. Co-transfection of si-circ_0000670 and miR-515-5p inhibitor could significantly attenuate the effects of si-circ_0000670 on cell proliferation, migration, invasion, cell cycle and apoptosis (P<0.05). Co-transfection of miR-515-5p mimic and pcDNA-SIX1 could significantly reduce the effects of miR-515-5p mimic on cell proliferation, migration, invasion, cell cycle and apoptosis (P<0.05). Compared with the sh-NC group [volume=(596.20±125.46) mm(3) and weight=(538.00±114.39) g], the volume and weight of transplanted tumors in the sh-circ_0000670 group [volume=(299.20±47.58) mm 3 and weight=(289.80±48.73 g)] were significantly reduced (P<0.05), the expression levels of circ_0000670 and SIX1 were significantly reduced (P<0.05), and the expression level of miR-515-5p was significantly increased (P<0.05). Conclusion: Knockdown of circ_0000670 could inhibit cell proliferation, migration, invasion of gastric cancer cells, induce cell cycle arrest in G(0)/G(1) phase and promote cell apoptosis by regulating the miR-515-5p/SIX1 axis.


Subject(s)
Animals , Mice , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Mice, Nude , MicroRNAs/genetics , Stomach Neoplasms/genetics
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-37, 2023.
Article in Chinese | WPRIM | ID: wpr-962622

ABSTRACT

ObjectiveTo verify the anti-oxidative stress effect of Huangqintang based on the nuclear factor E2-related factor 2 (Nrf2) signaling pathway by using Caco-2 cells as a carrier and RNA interference (RNAi) technology with in vitro experiments. MethodThe Caco-2 cells in the logarithmic growth phase were transfected with siRNA to construct siRNA Caco-2 cells. After normal Caco-2 cells and siRNA Caco-2 cells were incubated with Huangqintang of different doses, RNA and protein were extracted. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), Kelch-like ECH-associated protein 1 (Keap1), and Nrf2. Meanwhile, the activities of superoxide dismutase (SOD) and GSH-Px, as well as the expression levels of malondialdehyde (MDA) and reactive oxygen species (ROS), were detected by the colorimetric method and the probe method. ResultCompared with the results in the normal group, only the 400 mg·L-1 Huangqintang group and the sulforaphane (SFN) group could reduce the content of ROS and MDA in Caco-2 cells (P<0.01), while the activities of SOD and GSH-Px in the cells of the Huangqintang groups and the SFN group showed an upward trend. Furthermore, there were significant differences in the 400 mg·L-1 Huangqintang group/the SFN group and the normal group (P<0.01). Meanwhile, the protein and mRNA expression levels of HO-1, GST, Keap1, NQO1, and Nrf2 showed an upward trend in all groups (P<0.05, P<0.01). After transfection, compared with the normal group, the model group showed increased content of MDA and ROS, blunted activities of GSH-Px and SOD, and reduced protein and mRNA expression of HO-1, GST, Keap1, and NQO1 (P<0.05, P<0.01). After drug incubation, compared with the model group, the SFN group showed potentiated SOD activity, and the SFN group and the Huangqintang groups showed enhanced GSH-Px activity (P<0.01). Moreover, the activities of SOD and GSH-Px in the 400 and 200 mg·L-1 Huangqintang groups and the SFN group showed an upward trend (P<0.01), and the content of MDA in the 400 mg·L-1 Huangqintang group and the SFN group showed a downward trend. ROS decreased in all groups with drug intervention (P<0.01), and the protein and mRNA expression of HO-1, GST, Keap1, NQO1, and Nrf2 increased to varying degrees (P<0.05, P<0.01). ConclusionHuangqintang can play an anti-oxidative stress role by regulating the Nrf2 pathway.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2023.
Article in Chinese | WPRIM | ID: wpr-962621

ABSTRACT

ObjectiveTo explore the anti-inflammatory mechanism of Huangqintang based on the inflammation model in RAW264.7 cells. MethodHuangqintang was prepared and the safe dose to RAW264.7 cells was screened out. The RAW264.7 cells were seeded in 24-well plates and incubated with Huangqintang and lipopolysaccharide (LPS), successively. The concentrations of nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) were measured by Griess assay and enzyme-linked immunosorbent assay (ELISA), respectively. Meanwhile, RAW264.7 cells were inoculated in 6-well plates, and normal group, LPS group, LPS+Huangqintang group, nuclear factor-κB (NF-κB) p65 inhibitor PDTC group, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 group, extracellular signal-regulated kinase (ERK) inhibitor PD98059 group, c-Jun N-terminal kinase (JNK) inhibitor SP600125 group, and Janus kinase (JAK) inhibitor AG490 group were set up. After the cells were incubated with corresponding inhibitors and Huangqintang and stimulated by LPS, RNA and protein were extracted. The mRNA and protein expression levels of NF-κB p65, p38 MAPK, ERK, JNK, and JAK were detected by Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively, to explore the anti-inflammatory mechanism of Huangqintang by regulating the NF-κB, MAPK, and JAK/signal transducer and activator of transcription protein (STAT) signaling pathways. ResultAfter stimulation with LPS, the concentrations of NO, IL-6, TNF-α, and PGE2 in the cells of the model group increased significantly(P<0.05,P<0.01). Compare with the model group, after incubation with Huangqintang, the secretion of NO, IL-6, TNF-α, and PGE2 showed a downward trend (P<0.05,P<0.01). Compared with the normal group, the model group showed increased mRNA expression of p38 MAPK, ERK, JNK, JAK, and NF-κB p65 and total protein expression in cells after stimulation with LPS (P<0.05,P<0.01). Compare with the model group,after incubation with Huangqintang, the total protein and mRNA expression of p38 MAPK, ERK, JNK, JAK, and NF-κB p65 in inflammatory cells decreased (P<0.05,P<0.01). Meanwhile, the expression of NF-κB p65 total protein and mRNA in each inhibitor group showed a downward trend (P<0.05,P<0.01). ConclusionHuangqintang can inhibit the inflammatory response through the NF-κB, MAPK, and JAK-STAT signaling pathways.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 11-19, 2023.
Article in Chinese | WPRIM | ID: wpr-962620

ABSTRACT

ObjectiveTo evaluate the pharmacodynamic effect of Huangqintang (HQT) on ulcerative colitis (UC) model mice and investigate its protective effect against UC by regulating intestinal flora. MethodMale Balb/c mice were randomly divided into control group,model group, high-, medium-, and low-dose HQT groups (20, 10, 5 g·kg-1), flora interference group, flora interference model group, and flora interference-drug treatment group (HQT, 20 g·kg-1). The flora interference model was constructed through intragastric administration of antibiotics (200 mg·kg-1 bacitracin and 200 mg·kg-1 vancomycin) for 8 d, and the UC model was constructed by allowing mice with free access to 3% dextran sulfate sodium (DSS) solution for 7 d. HQT was administered for 7 d. After the experiments, the mice were sacrificed, and blood, colon, and feces were collected. Hematoxylin-eosin (HE) staining was performed to observe the colonic lesions. The serum levels of interleukin (IL)-4, IL-6, IL-10, and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression of Claudin1, MUC1, Occludin, and zonula occludens-1(ZO-1) in colon tissues was detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. The fecal DNA of mice was extracted and analyzed by high-throughput sequencing. ResultCompared with the normal group, the model group showed increased serum content of IL-4, IL-6, and TNF-α (P<0.05, P<0.01) and decreased IL-10 (P<0.05). Compared with the model group, the HQT groups displayed decreased serum levels of IL-4, IL-6, and TNF-α (P<0.05, P<0.01), increased IL-10 content (P<0.01), increased mRNA and protein expression levels of Claudin1, MUC1, Occludin, and ZO-1 (P<0.05, P<0.01). After flora interference, the diversity and abundance of intestinal bacteria decreased. To be specific, Proteobacteria increased (P<0.01), and Firmicutes and Bacteroidetes decreased (P<0.01). After UC induction by DSS, Bacteroidetes and Tenericutes decreased (P<0.05). The high-, medium-, and low-dose HQT groups showed increased Bacteroidetes and Tenericutes (P<0.05, P<0.01) and decreased Firmicutes (P<0.05). Additionally, the abundance of Lactobacillus, Lachnospiraceae NK4A136 group, Escherichia-Shigella, and Helicobacteris was positively proportional to the dose of HQT. ConclusionHQT can inhibit the inflammatory response of UC mice, restore the imbalance of intestinal flora, and repair the damaged intestinal mucosal barrier.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-10, 2023.
Article in Chinese | WPRIM | ID: wpr-962619

ABSTRACT

Ulcerative colitis (UC) is a chronic intestinal disease with unknown etiology, with main symptoms of abdominal pain, diarrhea, mucus, pus, and blood in the stool. It can be accompanied by various complications and has a high risk of developing to colon cancer. In recent years, the incidence of UC and related colon cancer has been increasing, which seriously affects human health and quality of life. The operation, immunosuppressant, etc. are the main approaches in the modern clinical treatment of UC and related colon cancer, but these methods all have different toxic and side effects, and the therapeutic effect is not ideal. For many years, traditional Chinese medicine (TCM) has attracted much attention in the treatment of UC and related colon cancer due to its slightly toxic side effects and remarkable curative efficacy. Huangqintang, derived from the Shang Han Lun (伤寒论), is composed of Scutellariae Radix, Paeoniae Radix Alba, Glycyrrhizae Radix et Rhizoma, and Jujubae Fructus with the functions of clearing heat, checking diarrhea, harmonizing the middle, and relieving pain, and has a significant effect on the treatment of UC. Huangqintang has complex compositions and plays roles with multiple targets and pathways. According to the literature and the research results of this research group for many years, it was found that the mechanism of Huangqintang in the treatment of UC and related colon cancer was presumably related to the protection of the intestinal mucosal barrier, inhibition of inflammatory response, promotion of mitophagy, inhibition of oxidative stress, regulation of intestinal flora, cell cycle, and gene expression, suppression of cell proliferation, and promotion of apoptosis. To provide theoretical references for an in-depth study of the mechanism and clinical use of Huangqintang, this paper reviewed the research advances in recent years.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 237-245, 2023.
Article in Chinese | WPRIM | ID: wpr-961704

ABSTRACT

At present, major depressive disorder (MDD) is highly prevalent with advanced neurological disorders as the main pathological manifestations. As the physiological function bearer of higher neural activity, gray matter has become the focus of MDD treatment. However, recent research has shown that white matter and gray matter are independent of each other in the central nervous system (CNS), and their functions are integrated and linked. In addition to gray matter damage, white matter damage is also the core driving event of disease progression and determines the outcome of MDD. At the treatment level, the current drug treatment of MDD mainly focuses on gray matter repair, while ignoring the importance of white matter integrity for the treatment of the disease, which has become the weakness of the current treatment of MDD. Traditional Chinese medicine (TCM) has good application potential in white matter repair. This paper elaborated on the following three aspects. ① The roles of white matter damage in the occurrence and development of MDD were summarized. ② The key link of white matter repair in MDD was elaborated with microglia microenvironment regulation as the entry point. ③ The application value of TCM in white matter repair in MDD was analyzed. This review aims to highlight the importance of white matter integrity in the treatment of MDD and is expected to expand the understanding dimension of the activity of related Chinese medicines in MDD from the perspective of white matter repair and analyze its potential application value.

15.
Chinese Journal of Contemporary Pediatrics ; (12): 633-638, 2023.
Article in Chinese | WPRIM | ID: wpr-982005

ABSTRACT

OBJECTIVES@#To investigate the distribution characteristics of non-bacterial pathogens in community-acquired pneumonia (CAP) in children.@*METHODS@#A total of 1 788 CAP children admitted to Shenyang Children's Hospital from December 2021 to November 2022 were selected. Multiple RT-PCR and capillary electrophoresis were used to detect 10 viral pathogens and 2 atypical pathogens, and serum antibodies of Chlamydial pneumoniae (Ch) and Mycoplasma pneumoniae (MP) were detected. The distribution characteristics of different pathogens were analyzed.@*RESULTS@#Among the 1 788 CAP children, 1 295 children were pathogen-positive, with a positive rate of 72.43% (1 295/1 788), including a viral pathogen positive rate of 59.68% (1 067/1 788) and an atypical pathogen positive rate of 22.04% (394/1 788). The positive rates from high to low were MP, respiratory syncytial virus (RSV), influenza B virus (IVB), human metapneumovirus (HMPV), human rhinovirus (HRV), human parainfluenza virus (HPIV), influenza A virus (IVA), bocavirus (BoV), human adenovirus (HADV), Ch, and human coronavirus (HCOV). RSV and MP were the main pathogens in spring; MP had the highest positive rate in summer, followed by IVA; HMPV had the highest positive rate in autumn; IVB and RSV were the main pathogens in winter. The positive rate of MP in girls was higher than that in boys (P<0.05), and there were no significant differences in other pathogens between genders (P>0.05). The positivity rates of certain pathogens differed among age groups (P<0.05): the positivity rate of MP was highest in the >6 year-old group; the positivity rates of RSV and Ch were highest in the <1 year-old group; the positivity rates of HPIV and IVB were highest in the 1 to <3 year-old group. RSV, MP, HRV, and HMPV were the main pathogens in children with severe pneumonia, while MP was the primary pathogen in children with lobar pneumonia, and MP, IVB, HMPV, RSV, and HRV were the top 5 pathogens in acute bronchopneumonia.@*CONCLUSIONS@#MP, RSV, IVB, HMPV, and HRV are the main pathogens of CAP in children, and there are certain differences in the positive rates of respiratory pathogens among children of different ages, genders, and seasons.


Subject(s)
Humans , Child , Female , Male , Infant , Child, Preschool , Pneumonia , Respiratory Syncytial Virus, Human , Antibodies , Community-Acquired Infections , Hospitalization , Influenza B virus , Mycoplasma pneumoniae
16.
Acta Pharmaceutica Sinica ; (12): 1505-1514, 2023.
Article in Chinese | WPRIM | ID: wpr-978711

ABSTRACT

As a member of G protein coupled-receptors superfamily, free fatty acid receptor 1 (FFAR1), is also known as GPR40, has been shown to regulate numerous pathophysiological processes in a variety of tissues and organs. The activated FFAR1 has a variety of biological functions. For instance, it can not only regulate metabolism of fatty acids and glucose, but also play an important role in immune inflammatory response, it may be a potential drug target for the treatment of various chronic inflammatory diseases. In this review, we focus on the recent researches of FFAR1's action in the regulation of pathophysiological processes, its molecular mechanism and new agonists development. At the same time, this review will take the discovery of series FFAR1 agonists as examples, and display the applied prospects of FFAR1.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-10, 2023.
Article in Chinese | WPRIM | ID: wpr-996804

ABSTRACT

ObjectiveTo investigate the efficacy of Huangqintang on mouse models of colitis-associated colon cancer (CAC) and explore the mechanism of Huangqintang in regulating immune function and inflammatory response, inhibiting abnormal cell proliferation, and delaying or inhibiting CAC formation in CAC. MethodC57BL/6J mice were randomly divided into a normal group, model group, mesalazine group, and high- and low-dose Huangqintang groups according to body weight, with 12 mice in each group. Except for the normal group, the rest of the mice were given two intraperitoneal injections of 10 mg·kg-1 azomethane (AOM) and allowed to drink 1.5% dextran sodium sulfate (DSS) freely for seven days and water normally for two weeks. Then, two cycles of ''DSS-drinking water'' were repeated. During the administration of DSS, mice in the normal group and model group were given gavage in equal doses of pure water. Mice in the mesalazine group were given 150 mg·kg-1·d-1 mesalamine suspension for gavage, and mice in the high- and low-dose Huangqintang groups were given 18 and 9 g·kg-1·d-1 Huangqintang for gavage, respectively. Each group was given one dose daily until the end of three cycles. After the intervention, the body weight, colon length, and number of colon tumors in each group were measured, and disease activity index (DAI) scores were performed. The serum contents of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), and gastrointestinal tumor marker carbohydrate antigen-199 (CA199) were detected by enzyme linked immunosorbent assay (ELISA). The colonic lesions were observed by hematoxylin-eosin (HE) staining. The expression of proliferative cell-associated antigen (Ki67) was observed by immunohistochemistry. The expression of T lymphocyte subsets (CD3+, CD4+, CD8+, and CD49b+) in mouse plasma was detected by flow cytometry. Fluorescein isothiocyanate-D (FITC-D) content in mouse serum was detected by fluorescent labeling method. The Western blot method was used to detect the expression of Cyclin D1, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and tightly junction-related Occludin and Claudin-1. ResultCompared with the normal group, the body weight of mice in the model group decreased. DAI score increased significantly, and the colon became shorter. Pro-inflammatory factors such as IL-6, TNF-α, and IL-1β increased, and IL-6 and TNF-α were significantly increased (P<0.05). The inflammatory factor IL-4 (P<0.05) and IL-10 were significantly reduced, and the tumor marker CA199 was significantly increased (P<0.01). HE staining showed that colon lesions, intestinal mucosal epithelial defects with a large number of inflammatory infiltrates, serious crypt structure damage, and glandular arrangement disorder were observed in the model group. Ki67 positive granules were expressed in large areas of colonic tissue. The serum CD4+ and CD4+/CD8+ of mice in the model group decreased significantly (P<0.05), and CD8+ increased significantly (P<0.05). The plasma content of FITC-D in the model group was significantly increased (P<0.05), and the expression of Cyclin D1, CDK2, and CDK4 proteins in colon tissue was significantly increased (P<0.05, P<0.01). In addition, the expression of Occludin and Claudin-1 was significantly decreased. Compared with the model group, the body weight of mice in the mesalazine group and the high- and low-dose Huangqintang groups increased. DAI score decreased, and the colon became longer. IL-6, TNF-α, and IL-1β expression decreased (P<0.05, P<0.01), but there was no significant change in IL-4 and IL-10. The content of CA199 was significantly reduced (P<0.05), and the colomatoid lesions and inflammatory infiltrates were reduced in the mesalazine group and the Huangqintang group. The crypt structure damage was lighter, and the positive expression of Ki67 was reduced. CD4+, CD4+/CD8+, and CD49b+ increased, and the difference was not statistically significant. FITC-D content decreased (P<0.05). The expression of Cyclin D1, CDK2, and CDK4 decreased (P<0.05, P<0.01), and Claudin-1 and Occludin protein expression increased in the high-dose Huangqintang group (P<0.05). ConclusionHuangqintang has a certain delay and inhibitory effect on AOM/DSS-induced inflammatory cancer transformation, and its mechanism of action may be related to regulating immune function and inflammatory response, inhibiting the release of pro-inflammatory factors, repairing damaged intestinal barriers, inhibiting abnormal proliferation of colon cells, and intervening in the formation and development of CAC colon tumors.

18.
Chinese Medical Sciences Journal ; (4): 286-296, 2023.
Article in English | WPRIM | ID: wpr-1009000

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) has become a prevalent chronic liver disease worldwide because of lifestyle and dietary changes. Gut microbiota and its metabolites have been shown to play a critical role in the pathogenesis of MAFLD. Understanding of the function of gut microbiota and its metabolites in MAFLD may help to elucidate pathological mechanisms, identify diagnostic markers, and develop drugs or probiotics for the treatment of MAFLD. Here we review the pathogenesis of MAFLD by gut microbiota and its metabolites and discuss the feasibility of treating MAFLD from the perspective of gut microbes.


Subject(s)
Humans , Gastrointestinal Microbiome , Fatty Liver/microbiology
19.
China Journal of Chinese Materia Medica ; (24): 6613-6623, 2023.
Article in Chinese | WPRIM | ID: wpr-1008860

ABSTRACT

The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 μg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.


Subject(s)
Plants, Medicinal , Pinellia/genetics , Plant Breeding , Phenotype , Uridine
20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 243-252, 2023.
Article in English | WPRIM | ID: wpr-982696

ABSTRACT

Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.


Subject(s)
Pinellia/genetics , Heat-Shock Response/genetics , Photosynthesis/genetics , Plants, Medicinal/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL