Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Acta Physiologica Sinica ; (6): 33-40, 2017.
Article in Chinese | WPRIM | ID: wpr-331596

ABSTRACT

Senescence-associated secretory phenotype (SASP) is often a concomitant result of cell senescence, embodied by the enhanced function of secretion. The SASP factors secreted by senescent cells include cytokines, proteases and chemokines, etc, which can exert great influence on local as well as systemic environment and participate in the process of cell senescence, immunoregulation, angiogenesis, cell proliferation and tumor invasion, etc. Relative to the abundance of SASP models in human cells, the in vitro SASP model derived from mouse cells is scarce at present. Therefore, the study aimed to establish a mouse SASP model to facilitate the research in the field. With this objective, we treated the INK4a-deficient mouse NIH-3T3 cells and the wildtype mouse embryonic fibroblasts (MEF) respectively with mitomycin C (MMC), an anticarcinoma drug which could induce DNA damage. The occurring of cell senescence was evaluated by cell morphology, β-gal staining, integration ratio of EdU and Western blot. Quantitative RT-PCR and ELISA were used to detect the expression and secretion of SASP factors, respectively. The results showed that, 8 days after the treatment of NIH-3T3 cells with MMC (1 μg/mL) for 12 h or 24 h, the cells became enlarged and the ratios of β-gal-positive (blue-stained) cells significantly increased, up to 77.4% and 90.4%, respectively. Meanwhile, the expression of P21 protein increased and the integration ratios of EdU significantly decreased (P < 0.01). Quantitative RT-PCR detection showed that the mRNA levels of several SASP genes, including IL-6, TNF-α, IL-1α and IL-1β increased evidently. ELISA detection further observed an enhanced secretion of IL-6 (P < 0.01). On the contrary, although wildtype MEF could also be induced into senescence by MMC treatment for 12 h or 24 h, embodied by the enlarged cell volume, increased ratios of β-gal-positive cells (up to 71.7% and 80.2%, respectively) and enhanced expression of P21 protein, the secretion of IL-6 displayed no significant change. Our study indicated that, although MMC could induce senescence in both mouse NIH-3T3 cells and wildtype MEF, only senescent NIH-3T3 cells displayed the canonical SASP phenomena. Current study suggested that senescent NIH-3T3 cells might be an appropriate in vitro SASP model of mouse cells.


Subject(s)
Animals , Mice , Cell Proliferation , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21 , Genetics , Metabolism , Cytokines , Genetics , Metabolism , DNA Damage , Fibroblasts , Interleukin-6 , Bodily Secretions , Mitomycin , Pharmacology , NIH 3T3 Cells , Phenotype
2.
Acta Physiologica Sinica ; (6): 349-354, 2005.
Article in Chinese | WPRIM | ID: wpr-334164

ABSTRACT

To characterize the background current in fetal human nasopharyngeal epithelial cells and clarify its relationship with volume activated Cl(-) currents (I(Cl,vol)), whole-cell patch clamp and cell imaging techniques were employed. Under isotonic conditions, a background current [(5.9+/-2.1) pA/pF at +80 mV, n=21] was detected. The current presented a weak outward rectification and a negligible time-dependent inactivation. The current-voltage relationship showed that the reversal potential of the background current [(-0.73+/-1.7) mV, n=21] was close to the calculated equilibrium potential for Cl(-)(-0.9 mV). Application of extracellular hypertonic stimulation (440 mOsmol/L) suppressed the current by (59.6+/-7.1)% and the inhibition was reversible after returned to isotonic conditions. Bathing the cells in hypotonic solution (160 mOsmol/L) induced a volume-sensitive Cl(-) current. The Cl(-) channel blockers, tamoxifen (20 micromol/L) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) (100 micromol/L), inhibited the background current by (74.0+/-5.2)% (P<0.01, n=5) and (60.9+/-8.9)% (P<0.01, n=6) at +80 mV and increased basal cell volume by (107.7+/-2.9)% (P<0.01, n=25) and (104.4+/-2.4)% (P<0.01, n=19), respectively. The data indicate that Cl(-) current is an important component of the background current in fetal human nasopharyngeal epithelial cells. The background Cl(-) current is involved in volume activated Cl(-) current and basal cell volume regulation.


Subject(s)
Humans , Cells, Cultured , Chloride Channels , Physiology , Electrophysiology , Epithelial Cells , Cell Biology , Metabolism , Physiology , Fetus , Nasopharynx , Cell Biology , Nitrobenzoates , Pharmacology , Patch-Clamp Techniques , Tamoxifen , Pharmacology
3.
Acta Physiologica Sinica ; (6): 525-530, 2004.
Article in English | WPRIM | ID: wpr-352739

ABSTRACT

The transwell chamber migration assay and the patch-clamp technique were used to investigate the volume-activated Cl(-) current (I(Cl.vol)) in migrated nasopharyngeal carcinoma cells (CNE-2Z). 47% hypotonic solution activated a ICl.vol in the migrated CNE-2Z cells. Compared with the control cells (non-migrated), the properties of this current and the sensitivity to Cl(-) channel blockers were changed. The current density in migrated CNE-2Z cells was higher than that in non-migrated cells. The current was almost completely inhibited by extracellular application of adenosine-5'-triphosphate (ATP, 10 mmol/L), 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB, 100 mmol/L) and tamoxifen (30 mmol/L) in all voltage steps applied. The inhibition of NPPB and tamoxifen on the current was stronger in migrated cells than that in non-migrated cells. The permeability sequence of the four anions was Br(-)>Cl(-)> I (-)>Gluconate. The sequence was different from that of the non-migrated cells (I(-)> Br(-)> Cl(-)> Gluconate). The results suggest that volume-activated chloride channels may be involved in the CNE-2Z cell migration.


Subject(s)
Humans , Carcinoma , Drug Therapy , Metabolism , Pathology , Cell Cycle , Physiology , Cell Division , Cell Movement , Cell Size , Chloride Channels , Metabolism , Physiology , Chlorides , Metabolism , Nasopharyngeal Neoplasms , Drug Therapy , Metabolism , Pathology , Nitrobenzoates , Pharmacology , Patch-Clamp Techniques , Tamoxifen , Pharmacology , Tumor Cells, Cultured
4.
Acta Physiologica Sinica ; (6): 691-696, 2004.
Article in English | WPRIM | ID: wpr-352713

ABSTRACT

Whole-cell patch clamp and cell volume measurement techniques were used to investigate the ATP-activated chloride current and the ATP effect on cell volume in nasopharyngeal carcinoma cells. Extracellular application of ATP in micromolar concentrations activated a current with the properties of modest outward rectification and negligible time-dependent inactivation in a dose-dependent manner. The current reversed at a potential [(-0.05+/-0.03) mV] close to the Cl- equilibrium potential (-0.9 mV). Substitution of Cl- with gluconate in the extracellular solution decreased the ATP-activated current and shifted the reversal potential positively. NPPB, one of the chloride channel blockers, inhibited the current by (81.03+/-9.36)%. The current was also depressed by the P2Y purinoceptor antagonist, reactive blue 2, by (67.39+/-5.06)%. ATP (50 micromol/L) decreased the cell volume under the isotonic condition. Depletion of extracellular and intracellular Cl- abolished the ATP effect on cell volume. The results suggest that extracellular ATP of micromolar scales can induce a chloride current associated with cell volume regulation by activation of chloride channel through binding to purinoceptor P2Y.


Subject(s)
Humans , Adenosine Triphosphate , Physiology , Cell Size , Chloride Channels , Metabolism , Physiology , Nasopharyngeal Neoplasms , Metabolism , Pathology , Nitrobenzoates , Pharmacology , Patch-Clamp Techniques , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL