Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Experimental Hematology ; (6): 816-820, 2009.
Article in Chinese | WPRIM | ID: wpr-334018

ABSTRACT

Histone modification is an important mechanism in oncogenesis and development of hematologic malignancies. Acetylation of lysine residues on histones and opening chromatin are correlated with activation of genes, whereas lysine residues methylation can result in either activation or repression on expressions of chromatin. The main point of all is deacetylation of histone mediated by histone deacetylases (HDACs). HDAC inhibitors are divided into 4 categories: short-chain fatty acids, hydroxamic acids, cyclic tetrapeptides and benzamides, owning different mechanisms in HDAC inhibition. Many kinds of I/II phase clinical tests showed that all these HDAC inhibitors have obviously therapeutic efficacies in treatment of hematologic malignancies with low poisons. Combination of HDAC inhibitors with DNA demethylation drugs can decrease DNA methylation, increase histone acetylation and recover antioncogene expression. As important parts of epigenetics, histone acetylation and HDAC inhibitors possess positive prospects in treatment of hematologic malignancies. In this review the advances of study on mechanisms of histone modification, HDAC inhibitors and their use in treatment of hematologic malignancies are summarized.


Subject(s)
Acetylation , Hematologic Neoplasms , Drug Therapy , Histone Deacetylase Inhibitors , Therapeutic Uses , Histone Deacetylases , Genetics , Histones , Chemistry , Genetics , Metabolism
2.
Chinese Medical Journal ; (24): 801-808, 2006.
Article in English | WPRIM | ID: wpr-265299

ABSTRACT

<p><b>BACKGROUND</b>The relationship between signal transduction and tumors has become one of the foci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activated in some cancer cells. But the function of the pathway in cancer cells is unknown. This study was undertaken to investigate the effect of the Stat6 signaling pathway on apoptosis in human colon cancer cells (HT-29 cells) and the possible mechanism of Stat6 by RNA interference techniques.</p><p><b>METHODS</b>Four eukaryotic expression plasmid vectors of short hairpin RNA (shRNA) specific for the STAT6 gene were designed and generated by molecular biological technology. The plasmid vectors were transfected into HT-29 cells by cation liposomes to block the Stat6 signaling pathway. The expressions of STAT6 mRNA and phosph-Stat6 protein were detected by the reverse transcriptase polymerase chain reaction (RT-PCR) method and flow cytometry respectively to screen the most effective shRNA at 72 hours after transfection. The apoptosis condition of the cells in which the expression of the STAT6 gene had been interfered was analyzed by flow cytometry and confocal microscopy. Both mRNA and protein expression of B cell lymphoma-2 (Bcl-2) and Bax were detected by RT-PCR and western blotting.</p><p><b>RESULTS</b>Two effective eukaryotic expression plasmid vectors of shRNA specific for the STAT6 gene were generated successfully. One can reduce the expression of the STAT6 gene by 82.4% and the other by 56.8% (P < 0.01). The apoptotic rate of colon cancer cells in which STAT6 gene expression had been interfered was significantly higher than that in controlled colon cancer cells (P < 0.01). In the cells in which the Stat6 signaling pathway was blocked, the levels of mRNA and protein Bcl-2 were significantly decreased, whereas those of Bax were significantly increased (P < 0.01).</p><p><b>CONCLUSIONS</b>The Stat6 signaling pathway can inhibit apoptosis in human colon cancer cells. The subsequent disorder of Bcl-2/Bax expression may play an important part in that process. The STAT6 gene may serve as a potential target in cancer therapy.</p>


Subject(s)
Humans , Apoptosis , Gene Silencing , HT29 Cells , Plasmids , Proto-Oncogene Proteins c-bcl-2 , Genetics , RNA, Messenger , RNA, Small Interfering , Pharmacology , STAT6 Transcription Factor , Genetics , Signal Transduction , bcl-2-Associated X Protein , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL