Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Nutrition Research and Practice ; : 660-669, 2023.
Article in English | WPRIM | ID: wpr-1002580

ABSTRACT

BACKGROUND/OBJECTIVES@#To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exerciseinduced fatigue.MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. @*RESULTS@#Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state.Resveratrol supplementation could improve the activities of Ca2+ -Mg2+ -ATPase, Na+ -K+ -ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. @*CONCLUSIONS@#Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolismrelated enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL