Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 207-217, 2017.
Article in Chinese | WPRIM | ID: wpr-348282

ABSTRACT

Glial cells, including astrocytes, oligodendrocyte progenitor cells (OPCs), NG2-glia, etc, are broadly distributed throughout the central nervous system (CNS). Also, it has been well known that glial cells play multi-roles in physiological and pathological processes in the CNS, such as maintaining homeostasis, providing neurotrophins for neurons and regulating neural signal transmission. Recently, increasing evidence showed that glial cells may also function as neural stem/progenitor cells and contribute to adult neurogenesis or neuroregeneration. In pathological conditions, for instance, astrocytes and OPCs could be activated to proliferate and differentiate. When cultured in vitro, they could form neurospheres which possess the ability to differentiate into astrocytes, oligodendrocytes and neurons. Additionally, forced expression of exogenous genes in astrocytes and NG2-glia can successfully reprogram them into neurons, which may also be suggestive of their stem/progenitor cell features. Here, we review current knowledge of the stem cell-like properties of glial cells, including what types of glial cells can function as stem/progenitor cells, how they can acquire the stem/progenitor potential and what progenies can be produced. These insights may foster a better understanding of glial cell biology and function in physiological or pathological processes in the CNS and lead to the idea of using the stem/progenitor-like glial cells as endogenous cell source for neural repair.

2.
Acta Physiologica Sinica ; (6): 794-804, 2017.
Article in Chinese | WPRIM | ID: wpr-348216

ABSTRACT

Spinal cord injury (SCI) is a challenging medical problem in the field of neurology, showing high incidence rate, disability rate, treatment cost and low-aged trend. Despite the clinical application of drug intervention, surgical treatment and modern rehabilitation training, no ideal curative effect has been achieved. Therefore, future study is necessary to clarify detailed pathological mechanism of SCI and identify the potential target cells for therapeutic intervention. In the central nervous system (CNS), astrocytes are the most abundant and widely distributed glial cells which play multiple key roles in maintaining homeostasis of the CNS in physiological and pathological conditions. Increasing evidence indicates that astrocytes are ideal therapeutic target cells for SCI. Here, we review current knowledge of the roles of astrocytes in the pathological reaction after SCI, astroglial transplantation and astrocyte reprogramming.

SELECTION OF CITATIONS
SEARCH DETAIL