Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 809-815, 2022.
Article in Chinese | WPRIM | ID: wpr-1015696

ABSTRACT

Breast cancer is a malignant tumor with high mortality, and multidrug resistance (MDR) mediated by ABCG2 (ATP-Binding cassette G2) is an important cause of chemotherapy failure. It is an urgent problem to explore the mechanism of ABCG2-mediated drug resistance and its key molecules. Epithelial cell adhesion molecule (EpCAM) is involved in multiple tumor drug resistance and is closely related to breast cancer MDR. However, its role in ABCG2-mediated breast cancer drug resistance has not been clarified. The purpose of this study was to explore the regulation of EpCAM on ABCG2-mediated MDR in breast cancer cells and its mechanism. CCK8 cytotoxicity assays confirmed that the drug resistance of MCF-7/MX cell line to mitoxantrone (MX) was significantly increased compared with MCF-7 drug-sensitive strain of human breast cancer. Western blotting results showed that ABCG2 was highly expressed and EpCAM was up-regulated in MCF-7/MX cells compared with MCF-7. SiRNA knockdown of EpCAM in MCF-7/MX cells down-regulated ABCG2 expression and restored sensitivity to MX. Cell morphology was observed under an inverted microscope, and it was found that knocking down EpCAM reduced cell-cell connections between MCF-7/MX cells. The co-localization of EpCAM and claudin 1 in MCF-7/MX cells was observed by immunofluorescence. Furthermore, Western blotting results showed that EpCAM knockdown reduced claudin 1 expression in MCF-7/MX cells. In conclusion, EpCAM may promote ABCG2-mediated mMDR in breast cancers by enhancing intercellular tight junctions through interaction with claudin 1.

2.
Chinese Pharmacological Bulletin ; (12): 861-865, 2022.
Article in Chinese | WPRIM | ID: wpr-1014083

ABSTRACT

Aim To investigate the role of aberrant cytokeratin 18(CK18) expression in breast cancer metastasis, anrl to elucidate the mechanism by identif¬ying its target.Methods The expression of CK.18 in human breast cancer tissues and cells was determined using immunohistochemical staining and Western blot, respectively.CK18 expression in human breast cancer MCF-7 cells was effectively down-regulated by shRNA, and its effect on breast cancer metastasis was further determined by scratch wound healing assay.The co-lo- cation of CK18 and non-muscle II A ( NMIIA) in MCF-7 cells was examined using double immunofluo¬rescence staining.The effect of CK18 down-regulation on the levels of NMIIA and c-Abl-ERK signaling was quantified by Western blot.Results Lower CK18 lev¬els was found in metastatic than that in primary breast cancer tissues and in highly invasive MDA-MB-231 than that in MCF-7 cells.CK.18 down-regulation pro¬moted the wound repair ability of MCF-7 cells 72h after scratch.CK18 and NMIIA were shown to co-locate in cytoplasm of MCF-7 cells.Moreover, down-regulation of CK18 increased NMIIA expression and activated the c-Abl-ERK signaling pathway in MCF-7 cells.Con¬clusions Down-regulation of CK18 could promote me¬tastasis of breast cancer, which is related to increased NMIIA expression and the activation of c-Abl-ERK sig¬naling pathway.

3.
Chinese Pharmacological Bulletin ; (12): 934-939, 2021.
Article in Chinese | WPRIM | ID: wpr-1014462

ABSTRACT

Aim: To investigate the effect of epithelial cell adhesion molecule (EpCAM) on metastasis and multidrug resistance of breast cancer and its mechanism. Methods Immunohistochemical staining was employed to detect the expression of EpCAM in adjacent non-tumor tissues (ANTTs) and breast cancer tissues. siRNA was applied to knock down EpCAM expression in MDA-MB-231 cells. Transwell assay was used to detect the invasion and migration ability of breast cancer cells. Western blot analysis was performed to determine the protein expression of EpCAM, epithelial mesenchymal transition (EMT) markers E-cadherin, N-cadherin and vimentin, breast cancer resistance protein (BCRP), and β-catenin. Results EpCAM immunoreactivity was consistently stronger in primary breast cancer tissues and even higher in metastatic lesions than that in ANTTs. The expression of EpCAM was significantly upregulated in triple negative breast cancer MDA-MB-231 cells. EpCAM knockdown using siRNA decreased the invasion and migration ability and BCRP expression, and partially reversed the EMT phenotypes of MDA-MB-231 cells, β-catenin expression was upregulated in MDA-MB-231 cells. ICG-001, a specific Wnt/β-catenin pathway inhibitor, downregulated the expression levels of EpCAM, N-cadherin, and vimentin in MDA-MB-231 cells. Conclusions EpCAM could promote metastasis and drug resistance of breast cancer through the induction of EMT, which is related to the Wnt/β-catenin signaling pathway.

4.
Journal of Peking University(Health Sciences) ; (6): 240-245, 2021.
Article in Chinese | WPRIM | ID: wpr-942168

ABSTRACT

OBJECTIVE@#To evaluate whether ultrafine particulates (UFPs) have direct deleterious effects on cardiac function through activating MAPK signaling.@*METHODS@#Langendorff-perfused Sprague-Dawley rat hearts were randomly divided into 2 groups (n=10/each group). In control group, the rat hearts were perfused with Tyrode's buffer for 40 min; in UFPs-treated group, the hearts were perfused with UFPs at a concentration of 12.5 mg/L. Cardiac function was determined by measuring left ventricular developed pressure (LVDP), left ventricular peak rate of contraction and relaxation (±dp/dtmax) and coronary flow (CF). The levels of malondialdehyde (MDA), superoxide dismutase (SOD), total anti-oxidant capacity (TAOC) were detected in order to evaluate cardiac oxidative stress via the thiobarbituric acid assay, water soluble tetrazolium salt assay and colorimetry, respectively. The expressions of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium were observed using immunohistochemical staining and Western blots.@*RESULTS@#No significant changes in cardiac function were detected before and after the perfusion in control group while UFPs perfused hearts showed a decline in cardiac function in a time-dependent manner (all P < 0.05). In UFPs-treated group, LVDP, +dp/dtmax, -dp/dtmax and CF were statistically reduced from (82.6±2.1) mmHg, (1 624±113) mmHg/s, (1 565±116) mmHg/s, (12.0±0.2) mL/min to (56.8±4.4) mmHg, (1 066±177) mmHg/s, (1 082±134) mmHg/s, (8.7±0.3) mL/min (all P < 0.05), respectively. Furthermore, The comparison between the two groups observed that UFPs perfusion caused a significant decrease in cardiac function at 30 and 40 min compared with the control group (all P < 0.05). At the end of the perfusion, the level of MDA was increased from (0.98±0.14) nmol/L to (1.95±0.18) nmol/L, while SOD and TAOC were reduced from (12.50±1.87) U/mL and (6.83±1.16) U/mL to (6.50 ±1.04) U/mL and (3.67±0.82) U/mL (all P < 0.001) in UFPs group, respectively. In coincidence with these changes, immunohistochemistry and Western blots results showed that the levels of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium significantly increased in UFPs group as compared with control group (all P < 0.05).@*CONCLUSION@#The results of this study demonstrated that the short-term exposure of UFPs to the isolated rat hearts has direct and acute toxic effects on cardiac function, probably related to attenuation of anti-oxidative capacity and activation of MAPK signaling pathways.


Subject(s)
Animals , Rats , Heart , Malondialdehyde/metabolism , Myocardium , Oxidative Stress , Rats, Sprague-Dawley
5.
China Journal of Chinese Materia Medica ; (24): 4797-4804, 2015.
Article in Chinese | WPRIM | ID: wpr-236040

ABSTRACT

The DNA structures could be altered or even damaged by exogeous or endogenous factors during cell proliferation. Failure of effective and timely repair will lead to cell cycle arrest or apoptosis. By taking the advantage of the quick proliferation of cancer cells, DNA damage induction, cell cycle arrest and apoptosis promotion have become important strategies for ant-cancer chemotherapy. Previous reports showed that an array of natural compounds inhibit cancer cell proliferation by inducing DNA damage, which have therapeutic potentials for anti-cancer drug research and development.


Subject(s)
Animals , Humans , Biological Products , Pharmacology , Therapeutic Uses , DNA Damage , Drugs, Chinese Herbal , Therapeutic Uses , Neoplasms , Drug Therapy
SELECTION OF CITATIONS
SEARCH DETAIL