Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 316-321, 2014.
Article in Chinese | WPRIM | ID: wpr-245083

ABSTRACT

To observe a PPAR-alpha agonist effect of N-oleoylethanolamine (OEA) on CB2 (cannabinoid receptor 2), an anti-inflammatory receptor in vascular endothelial cell, healthy HUVECs and TNF-alpha induced HUVECs were used to establish a human vascular endothelial cell inflammatory model. Different doses of OEA (10, 50 and 100 micromol x L(-1)) had been given to HUVECs, cultured at 37 degrees C for 7 h and then collected the total protein and total mRNA. CB2 protein expression was detected by Western blotting and CB2 mRNA expression was assayed by real-time PCR. As the results shown, OEA (10 and 50 micromol x L(-1)) could induce the CB2 protein and mRNA expression, but not 100 micromol x L(-1). To detect if anti-inflammation effect of OEA is partly through CB2, CB2 inhibitor AM630 was used to inhibit HUVEC CB2 expression, then the VCAM-1 expression induced by TNF-alpha was detected, or THP-1 adhere to TNF-alpha induced HUVECs was examined. OEA (50 micromol x L(-1)) could inhibit TNF-alpha induced VCAM-1 expression and THP-1 adhere to HUVECs, these effects could be partly inhibited by a CB2 inhibitor AM630. The anti-inflammation effect of OEA is induced by PPAR-alpha and CB2, suggesting that CB2 signaling could be a target for anti-atherosclerosis, OEA have wide effect in anti-inflammation, it may have better therapeutic potential in anti-inflammation in HUVECs, thus achieving anti-atherosclerosis effect.


Subject(s)
Humans , Anti-Inflammatory Agents , Pharmacology , Atherosclerosis , Pathology , Cell Adhesion , Cells, Cultured , Endocannabinoids , Pharmacology , Endothelial Cells , Cell Biology , Metabolism , Ethanolamines , Pharmacology , Indoles , Pharmacology , Monocytes , Oleic Acids , Pharmacology , PPAR alpha , RNA, Messenger , Metabolism , Receptor, Cannabinoid, CB2 , Genetics , Metabolism , Tumor Necrosis Factor-alpha , Pharmacology , Vascular Cell Adhesion Molecule-1 , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL