Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Genomics & Informatics ; : e7-2022.
Article in English | WPRIM | ID: wpr-924987

ABSTRACT

2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor кB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 122-131, 2021.
Article in Chinese | WPRIM | ID: wpr-950253

ABSTRACT

Objective: To explore the anti-cancer activity of maslinic acid against colorectal cancer (CRC) cell lines and its possible mechanism. Methods: The inhibitory effect of maslinic acid was screened against five CRC cell lines (HT-29, HCT 116, SW480, SW48, and LS 174T) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle analyses were carried out using annexin V-FITC/propidium iodide staining and propidium iodide staining, respectively and subjected to fluorescence-activated cell sorting analysis. Protein expression studies of inhibitor of κB kinase-β (IKK-β), checkpoint kinase 1 (Chk1) and cyclin D1 were conducted using the JESS system. Results: Maslinic acid exhibited growth inhibitory effect in a doseand time-dependent manner in HT-29 and HCT 116 cell lines. A more prominent apoptosis induced by maslinic acid was observed in HCT 116 cell line. However, in HT-29 cell line, maslinic acid induced cell cycle arrest by inhibiting the G1-S transition, which was accompanied by the downregulation of cyclin D1. The expression of unphosphorylated IKK-β protein was increased in both (HT-29 and HCT 116) cell lines after maslinic acid treatment. Conclusions: Maslinic acid inhibits the growth of HT-29 and HCT 116 cells in a different manner, induces cell cycle arrest in HT-29 cells and causes apoptosis in HCT 116 cells partially via NF-κB pathway inhibition.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 122-131, 2021.
Article in Chinese | WPRIM | ID: wpr-942817

ABSTRACT

Objective: To explore the anti-cancer activity of maslinic acid against colorectal cancer (CRC) cell lines and its possible mechanism. Methods: The inhibitory effect of maslinic acid was screened against five CRC cell lines (HT-29, HCT 116, SW480, SW48, and LS 174T) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle analyses were carried out using annexin V-FITC/propidium iodide staining and propidium iodide staining, respectively and subjected to fluorescence-activated cell sorting analysis. Protein expression studies of inhibitor of κB kinase-β (IKK-β), checkpoint kinase 1 (Chk1) and cyclin D1 were conducted using the JESS system. Results: Maslinic acid exhibited growth inhibitory effect in a doseand time-dependent manner in HT-29 and HCT 116 cell lines. A more prominent apoptosis induced by maslinic acid was observed in HCT 116 cell line. However, in HT-29 cell line, maslinic acid induced cell cycle arrest by inhibiting the G1-S transition, which was accompanied by the downregulation of cyclin D1. The expression of unphosphorylated IKK-β protein was increased in both (HT-29 and HCT 116) cell lines after maslinic acid treatment. Conclusions: Maslinic acid inhibits the growth of HT-29 and HCT 116 cells in a different manner, induces cell cycle arrest in HT-29 cells and causes apoptosis in HCT 116 cells partially via NF-κB pathway inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL