Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 47-52, 2003.
Article in Chinese | WPRIM | ID: wpr-318944

ABSTRACT

The aim of this study was to investigate the protective effect of adenosine (ADO) on cardiomyocytes following hypoxia/reoxygenation (H/R) and its molecular mechanism. Primary cultured cardiomyocytes of neonatal rats were divided into two groups, namely H/R (control) and ADO (1.0 micromol/L) groups. The morphologic changes in cardiomyocytes were observed under an inverted phase-contrast microscope. The following parameters of the two groups were determined: lactate dehydrogenase (LDH) activity, intracellular calcium concentration and malondialdehyde (MDA) content. Tumor necrotic factor (TNF-alpha) assay was performed using an ELISA kit and NF-kappaB in the nucleus was analyzed by electrophoretic mobility shift assay (EMSA). The results are as follows: (1) after H/R injury, cardiomyocytes contracted, tending to get round in shape and its pseudopods decreased, while marked morphological changes were not observed in ADO group; (2) LDH leakage maintained at a lower level in ADO group than that in the control group during H/R (both P<0.01); (3) ADO significantly reduced the concentration of calcium in cells and prevented calcium overload during H/R (both P<0.01); (4) ADO markedly reduced the content of MDA during H/R (both P<0.01); (5) ADO inhibited the production of TNF-alpha during H/R (both P<0.01); and (6) ADO down-regulated NF-kappaB binding activity of cardiomyocytes during H/R (both P<0.01) The results suggest that (1) exogenous ADO attenuates H/R injury of cultured cardiomyocytes; (2) exogenous ADO inhibits the production of TNF-alpha after H/R injury; (3) exogenous ADO prevents the activation of NF-kappaB, which may be the molecular mechanism of down-regulation of TNF-alpha expression.


Subject(s)
Animals , Rats , Adenosine , Pharmacology , Animals, Newborn , Cell Hypoxia , Cells, Cultured , Down-Regulation , Myocytes, Cardiac , Cell Biology , Metabolism , NF-kappa B , Metabolism , Rats, Sprague-Dawley , Reperfusion Injury , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL