ABSTRACT
Objective: To analyze the drug resistance and multilocus sequence typing of five types of diarrheagenic Escherichia coli (DEC) isolated from diarrhea outpatients of diarrhea comprehensive monitoring designated hospital in Qingpu District, Shanghai from 2015 to 2019. Methods: From January 2015 to December 2019, five types of DEC, isolated and identified from diarrhea outpatient cases' anal swabs of the Qingpu branch of Zhongshan Hospital were collected to determine the minimal inhibitory concentration by using the micro broth dilution susceptibility test. The strains, resistant to the third-generation cephalosporins or carbapenems, or producing ESBLs, were selected based on the results of sensitivity tests and determined by WGS. The MLST typing of DEC was analyzed based on the WGS technology and the minimum spanning tree was constructed by BioNumerics 7.6 software to analyze the local dominant flora. Results: A total of 513 strains of DEC were detected and isolated from 4 494 anal swabs, with a detection rate of 11.42%. About 500 strains were tested for drug sensitivity to nine antibiotics in four classes, including 330 strains of enterotoxigenic E.coli (ETEC), 72 strains of enteroaggregative E.coli (EAEC), 95 strains of enteropathogenic E.coli (EPEC), 1 strain of enterohemorrhagic E.coli (EHEC), and 2 strains of enteroinvasive E.coli (EIEC). From 2015 to 2019, the resistance rate of cefotaxime-clavulanic acid was significantly different (P<0.05). The resistance rate of virulence types of DEC to nalixic acid was significantly different (P<0.05). About 71 strains of DEC were determined by WGS, and 77 drug-resistant genes were detected. Strains were classified into 32 ST subtypes, with the dominant genotypes being ST-1491 (29.6%, 21/71) and ST-10 Complex (23.9%, 17/71). All ST-1491 produced ESBLs, which were blaCTX-M gene mutant strains. The dominant type of ST-10 complex was ST-218 (35.3%, 6/17). In addition, 8 strains of EAEC, 14 strains of EPEC and 49 strains of ETEC were classified into 7, 14 and 18 ST subtypes, respectively. Conclusion: The drug resistance of DEC strains from the diarrhea outpatient case of Qingpu District is serious. The ST types of EAEC and EPEC are highly polymorphic. The dominant ST types of DEC are basically consistent with the common genotypes in southeast China.
ABSTRACT
Objective: To analyze the drug resistance and multilocus sequence typing of five types of diarrheagenic Escherichia coli (DEC) isolated from diarrhea outpatients of diarrhea comprehensive monitoring designated hospital in Qingpu District, Shanghai City from 2015 to 2019. Methods: From January 2015 to December 2019, five types of DEC, isolated and identified from diarrhea outpatient cases' anal swabs of the Qingpu branch of Zhongshan Hospital were collected to determine the minimal inhibitory concentration by using the micro broth dilution susceptibility test. The strains, resistant to the third-generation cephalosporins or carbapenems, or producing ESBLs, were selected based on the results of sensitivity tests and determined by WGS. The MLST typing of DEC was analyzed based on the WGS technology and the minimum spanning tree was constructed by BioNumerics 7.6 software to analyze the local dominant flora. Results: A total of 513 strains of DEC were detected and isolated from 4 494 anal swabs, with a detection rate of 11.42%. About 500 strains were tested for drug sensitivity to nine antibiotics in four classes, including 330 strains of enterotoxigenic E.coli (ETEC), 72 strains of enteroaggregative E.coli (EAEC), 95 strains of enteropathogenic E.coli (EPEC), 1 strain of enterohemorrhagic E.coli (EHEC), and 2 strains of enteroinvasive E.coli (EIEC). From 2015 to 2019, the resistance rate of cefotaxime-clavulanic acid was significantly different (P<0.05). The resistance rate of virulence types of DEC to nalixic acid was significantly different (P<0.05). About 71 strains of DEC were determined by WGS, and 77 drug-resistant genes were detected. Strains were classified into 32 ST subtypes, with the dominant genotypes being ST-1491 (29.6%, 21/71) and ST-10 Complex (23.9%, 17/71). All ST-1491 produced ESBLs, which were blaCTX-M gene mutant strains. The dominant type of ST-10 complex was ST-218 (35.3%, 6/17). In addition, 8 strains of EAEC, 14 strains of EPEC and 49 strains of ETEC were classified into 7, 14 and 18 ST subtypes, respectively. Conclusion: The drug resistance of DEC strains from the diarrhea outpatient case of Qingpu District is serious. The ST types of EAEC and EPEC are highly polymorphic. The dominant ST types of DEC are basically consistent with the common genotypes in southeast China.
ABSTRACT
Objective: To analyze the drug resistance and multilocus sequence typing of five types of diarrheagenic Escherichia coli (DEC) isolated from diarrhea outpatients of diarrhea comprehensive monitoring designated hospital in Qingpu District, Shanghai City from 2015 to 2019. Methods: From January 2015 to December 2019, five types of DEC, isolated and identified from diarrhea outpatient cases' anal swabs of the Qingpu branch of Zhongshan Hospital were collected to determine the minimal inhibitory concentration by using the micro broth dilution susceptibility test. The strains, resistant to the third-generation cephalosporins or carbapenems, or producing ESBLs, were selected based on the results of sensitivity tests and determined by WGS. The MLST typing of DEC was analyzed based on the WGS technology and the minimum spanning tree was constructed by BioNumerics 7.6 software to analyze the local dominant flora. Results: A total of 513 strains of DEC were detected and isolated from 4 494 anal swabs, with a detection rate of 11.42%. About 500 strains were tested for drug sensitivity to nine antibiotics in four classes, including 330 strains of enterotoxigenic E.coli (ETEC), 72 strains of enteroaggregative E.coli (EAEC), 95 strains of enteropathogenic E.coli (EPEC), 1 strain of enterohemorrhagic E.coli (EHEC), and 2 strains of enteroinvasive E.coli (EIEC). From 2015 to 2019, the resistance rate of cefotaxime-clavulanic acid was significantly different (P<0.05). The resistance rate of virulence types of DEC to nalixic acid was significantly different (P<0.05). About 71 strains of DEC were determined by WGS, and 77 drug-resistant genes were detected. Strains were classified into 32 ST subtypes, with the dominant genotypes being ST-1491 (29.6%, 21/71) and ST-10 Complex (23.9%, 17/71). All ST-1491 produced ESBLs, which were blaCTX-M gene mutant strains. The dominant type of ST-10 complex was ST-218 (35.3%, 6/17). In addition, 8 strains of EAEC, 14 strains of EPEC and 49 strains of ETEC were classified into 7, 14 and 18 ST subtypes, respectively. Conclusion: The drug resistance of DEC strains from the diarrhea outpatient case of Qingpu District is serious. The ST types of EAEC and EPEC are highly polymorphic. The dominant ST types of DEC are basically consistent with the common genotypes in southeast China.
ABSTRACT
Objective To investigate the efficacies of intrauterine balloon tamponade, intrauterine gauze tamponade and B-Lynch suture in prevention and treatment of postpartum hemorrhage. Methods A total of 266 patients with high risk of postpartum hemorrhage or postpartum hemorrhage in our hospital from January 2013 to October 2014 were included in this study. They received intrauterine Bakri balloon tamponade (n=114), intrauterine gauze tamponade (n=69) or B-Lynch suture (n=83). The hemostatic effects of three methods and their relationship with different hemostasis occasions and high risk factors were analyzed. Results The hemostatic rates of intrauterine balloon tamponade, gauze tamponade and B-Lynch suture were 90.4%, 94.2% and 92.8%, respectively, with no significant differences found between the 3 groups (P>0.05). The hospitalization time, postpartum infection or involution of the uterus of three methods were not significantly different (P>0.05). The operation period was (46.08±13.8) min for intrauterine Bakri balloon tamponade, (56.49±12.94) min for intrauterine gauze tamponade, and (52.36±21.11) min for B-Lynch suture,with that of Bakri balloon group being significantly shorter than the other two groups (P<0.01). As for hemostatic occasion, 134 cases received preventive hemostatic treatment and were all successful, while 132 cases receiving hemostatic treatment had a successful rate of 84.1%, being significantly lower than that of the prevention hemostasis group (P<0.01); moreover, the postpartum infection rate was significantly lower in the prevention group compared with hemostatic treatment group (P<0.01). When placenta factor and uterine factor exist at the same time, the bleeding rate and bleeding volume of the mixed factor were significantly higher than that of single factor (P<0.01). Conclusion The three hemostasis methods have no differences in their hemostatic effects, hospitalization time, postpartum infection and uterine involution, with Bakri balloon's operation having the shortest time, therefore it may serve as an emergency hemostasis method to win more time for further treatment. The success rate of hemostasis depends not on the hemostasis method, but on the right occasions, the earlier the better. When placenta factor and uterine factor exist at the same time, the failure rate of hemostasis is higher, and emergency plans should be taken to reduce postpartum hemorrhage as soon as possible.