Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 153-161, 2017.
Article in Chinese | WPRIM | ID: wpr-779834

ABSTRACT

The genus Tripterygium is an immune suppressor in the Chinese traditional medicines. Due to the habitat destruction and anthropogenic over-exploitation, the wild genus Tripterygium plants have decreased dramatically in recent years or even been endangered. It is critical to evaluate and protect genus Tripterygium wild resource. In this research, simple sequence repeat (SSR) molecular markers were applied to the investigation of the genetic diversity and genetic structure of 28 populations for genus Tripterygium (396 samples from 9 provinces in China). We found a high level of genetic diversity (percentage of polymorphic loci PPL=77.29%, Shannon's information index I=0.639 4; Nei's expected heterozygosity H=0.359 9) and high genetic differentiation among the populations (gene flow Nm=0.228 7). Based on Nei's genetic distance, the phylogenic tree of populations was constructed and 28 populations were divided into 6 clusters according to STRUCTURE clustering analysis. T. hypoglaucumwas was mainly divided into 3 clusters, including Sichuan, Yunnan and GuizhouChongqing. T. regelii was separated to cluster 4, while T. wilfordii was divided into two clusters:the transition type LQ and NY were divided into cluster 5, and the others were in cluster 6. These results provide a theory basis for the conservation of wild resource, research of genetic polymorphism and molecular marker for assisted breeding of genus Tripterygium.

2.
China Journal of Chinese Materia Medica ; (24): 319-325, 2017.
Article in Chinese | WPRIM | ID: wpr-230952

ABSTRACT

We studied the content of chemical compositions and correlation among species of Tripterygium genus by principal component analysis(PCA) and variance analysis(ANOVA), and we also studied the difference among the 3 species.Using [BMIm]PF6 ionic liquid-based ultrasonic-assisted extraction, we determined the contents of 11 compounds including wilforgine, wilforzine, triptophenolide, wilforine, triptoquinone A, triptolide, tripterin, egallocatechin, epigallocatechin, catechin, and epicatechin in 28 batches of the Tripterygium species by HPLC and PCA. Partial least squares analysis (PLS) and ANOVA were also performed to verify the results.The analysis results of PCA and PLS showed that three species of Tripterygium genus were clustered into three regions respectively, and triptoquinone A was the important factor which affected the aggregation of these three species.There was a significant difference among the contents of 11 chemical components in the three species(P<0.000 1).These results indicated that there was a certain correlation between the chemical compositions and the classification of the species, and the difference of the chemical compositions among the three species was obvious. In this work, the content determination method is rapid and accurate, and the analysis method is simple and convenient, which provides a reference for the classification, the efficacy and the toxicity of the species.

3.
China Journal of Chinese Materia Medica ; (24): 567-571, 2016.
Article in Chinese | WPRIM | ID: wpr-230116

ABSTRACT

The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use.

4.
China Journal of Chinese Materia Medica ; (24): 597-602, 2016.
Article in Chinese | WPRIM | ID: wpr-230111

ABSTRACT

To evaluate the efficacy and safety associated with anti-hypoxia effect and establish the quality standard for Brassicea Radix extract, the investigations of acute toxicity and subacute toxicity were carried out to preliminarily appraise the toxicity, and the models of normal pressure hypoxia, acute cerebral ischemia and sodium nitrite poisoning in mice were used to evaluate the effect of enhancing anoxia endurance. Then according to the methods described in the Appendix of Chinese Pharmacopoeia (2010 edition), the sulfuric acid-phenol method was applied to determine the content of polysaccharide, and the water, ash and insoluble matter in water inspections were carried out and the control medicinal herb was identified with the samples by qualitative TLC. The results indicated that ① the toxic effects (LD₅₀) of mice was 56.73 g•kg⁻¹ by oral administration of Brassicea Radix extract, while Dm and Dn were respective 86.80 g•kg•d⁻¹ and 35.55 g•kg•d⁻¹;②the determined effective dosage of Brassicea Radix extract which could enhance anoxia endurance was 0.388 g•kg⁻¹•d⁻¹; ③ the methods of TLC and the content of polysaccharide were established. The method of quality control has been recorded in Sichuan Province Standard for Tibetan Medicine, which is reliable, accurate and simple, with good reproducibility. Meanwhile, given the prominent effect on anti-hypoxia and good safety, it provided important basis for clinic safe and effective usage and the development of health products.

5.
China Journal of Chinese Materia Medica ; (24): 879-886, 2016.
Article in Chinese | WPRIM | ID: wpr-230063

ABSTRACT

Using six kinds of ionic liquids as extractants, ultrasonic-assisted extraction coupled with HPLC method was developed for the simultaneous determination of wilforgine, wiforizine, triptophenolide, wilforine and triptoquinone A in Tripterygium hypoglaucum. The separation was performed on an Inertsil ODS-4 column with the mobile phase of acetonitrile-0.1% phosphoric acid in gradient elution at a flow rate of 0.75 mL•min⁻¹. Detection wavelength was 220 nm and the column temperature was 30℃. Under the optimal extractions, the results showed that triptophenolide and triptoquinone A had the highest extraction yield by using 0.6 mol•L⁻¹ [BMIm]PF6 methanol solution as extraction solvent with the solid-liquid ratio of 1∶10. The calibration curves of triptophenolide and triptoquinone A showed a good linearity in the range of 0.000 65-0.026, 0.066 55-2.662 μg (r=0.999 9)respectively. The average recovery was 102.4% and 97.90% with RSD of 2.5% and 1.5%, respectively. Wilforgine, wiforizine and wilforine had the highest extraction yield when using 0.6 mol• L⁻¹ [BMIm]PF6absolute ethanol solution as extraction solvent with the solid-liquid ratio of 1∶10. The content of wilforgine, wiforizine and wilforine from 0.023 9-0.956, 0.002 7-0.108, 0.006 4-0.256 μg showed a good linearity (r=0.999 9), and the average recovery was 100.6%,99.50% and 98.70% with RSD of 2.1%,1.9% and 2.7%, respectively. The results indicated that this method is convenient, reliable and green, and can be used as a reliableanalytical method for the quality control of T.hypoglaucum.

6.
Chinese Pharmaceutical Journal ; (24): 1266-1272, 2015.
Article in Chinese | WPRIM | ID: wpr-859570

ABSTRACT

OBJECTIVE: To identify traditional Chinese medicine Rubiae Radix et Rhizoma and its adulterants using DNA barcodes. METHODS: A total of 317 sequences of psbA-trnH, matK and rbcL from 13 species were analized. The intra- and inter-specific K2P genetic distances and neighbor-joining tree were calculated using MEGA5. 1 program. RESULTS: The DNAs were successfully extracted from 76 original plant samples. The amplification rates of psbA-trnH, matK and rbcL were 100%, 96%, and 99%, respectively. The adulterants could be identified from R. cordifolia by the single marker and the two combinations except for those adulterants in the Rubia genus. Fortunately, R. cordifolia could be identified from all the adulterants by psbA-trnH + matK + rbcL combination marker. The intra- and inter-specific K2P genetic distances of psbA-trnH + matK + rbcL were 0-0.001 4 and 0.000 7-0.630 3. R. cordifolia could be identified from alTthe adulterants by the psbA-trnH + matK + rbcL combination using NJ tree method. Among the 30 unidentified samples of Rubiae Radix et Rhizoma which were collected from medicinal herb markets, all three markers, including psbA-trnH, matK and rbcL, could be amplified from 22 samples. The 11 samples of Rubiae Radix et Rhizoma clustered with R. cordifolia and the others were divided into three clusters by the psbA-trnH + matK + rbcL combination using NJ tree method. CONCLUSION: psbA-trnH + matK + rbcL combination can be used as DNA barcode to identify R. cordifolia from adulterants.

7.
Acta Pharmaceutica Sinica ; (12): 1660-1667, 2015.
Article in Chinese | WPRIM | ID: wpr-320027

ABSTRACT

Ultrafine powder and cell wall-broken powder of herbal medicine lack of the morphological characters and microscopic identification features. This makes it hard to identify herb's authenticity with traditional methods. We tested ITS2 sequence as DNA barcode in identification of herbal medicine in ultrafine powder and cell wall-broken powder in this study. We extracted genomic DNAs of 93 samples of 31 representative herbal medicines (28 species), which include whole plant, roots and bulbs, stems, leaves, flowers, fruits and seeds. The ITS2 sequences were amplified and sequenced bidirectionally. The ITS2 sequences were identified using Basic Local Alignment Search Tool (BLAST) method in the GenBank database and DNA barcoding system to identify the herbal medicine. The genetic distance was analyzed using the Kimura 2-parameter (K2P) model and the Neighbor-joining (NJ) phylogenetic tree was constructed using MEGA 6.0. The results showed that DNA can be extracted successfully from 93 samples and high quality ITS2 sequences can be amplified. All 31 herbal medicines can get correct identification via BLAST method. The ITS2 sequences of raw material medicines, ultrafine powder and cell wall-broken powder have same sequence in 26 herbal medicines, while the ITS2 sequences in other 5 herbal medicines exhibited variation. The maximum intraspecific genetic-distances of each species were all less than the minimum interspecific genetic distances. ITS2 sequences of each species are all converged to their standard DNA barcodes using NJ method. Therefore, using ITS2 barcode can accurately and effectively distinguish ultrafine powder and cell wall-broken powder of herbal medicine. It provides a new molecular method to identify ultrafine powder and cell wall-broken powder of herbal medicine in the quality control and market supervision.


Subject(s)
Cell Wall , DNA Barcoding, Taxonomic , DNA, Plant , Genetics , DNA, Ribosomal Spacer , Genetics , Drugs, Chinese Herbal , Phylogeny , Plants, Medicinal , Classification , Genetics , Powders , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL