Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Central South University(Medical Sciences) ; (12): 920-929, 2023.
Article in English | WPRIM | ID: wpr-982364

ABSTRACT

The lymphatic system of the heart plays an important role in the repair process after myocardial injury and may regulate normal tissue homeostasis and natural regeneration via maintaining fluid homeostasis and controlling the inflammatory response. The lymphatic system in the heart is activated after myocardial injury and is involved in the scarring process of the heart. Recent studies on the lymphatic system and myocardial repair of the heart have developed rapidly, and the mechanisms for lymphangiogenesis and lymphatic endothelial cell secretion have been elucidated by different animal models. A deep understanding of the structural, molecular, and functional characteristics of the lymphatic system of the heart can help develop therapies that target the lymphatic system in the heart. Summarizing the progress in studies on targets related to myocardial repair and the cardiac lymphatic system is helpful to provide potential new targets and strategies for myocardial repair therapy after myocardial infarction.


Subject(s)
Animals , Heart , Myocardium , Myocardial Infarction , Heart Injuries , Lymphatic System
2.
Journal of Central South University(Medical Sciences) ; (12): 1733-1739, 2022.
Article in English | WPRIM | ID: wpr-971358

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a syndrome with highly heterogeneous clinical symptoms, and its incidence has been increasing in recent years. Compared with heart failure with reduced ejection fraction (HFrEF), HFpEF has a worse prognosis. Traditional therapies targeting the internal mechanisms of the heart show limited or inefficacy on HFpEF, and new therapeutic targets for HFpEF are expected to be found by focusing on the extracardiac mechanisms. Recent studies have shown that cardiopulmonary pathophysiological interaction exacerbates the progression of HFpEF. Hypertension, systemic vascular injury, and inflammatory response lead to coronary microvascular dysfunction, myocardial hypertrophy, and coronary microvascular remodeling. Acute kidney injury affects myocardial energy production, induces oxidative stress and catabolism of myocardial protein, which leads to myocardial dysfunction. Liver fibrosis mediates heart injury by abnormal protein deposition and inflammatory factors production. Skeletal muscle interacts with the sympathetic nervous system by metabolic signals. It also produces muscle factors, jointly affecting cardiac function. Metabolic syndrome, gut microbiota dysbiosis, immune system diseases, and iron deficiency promote the occurrence and development of HFpEF through metabolic changes, oxidative stress, and inflammatory responses. Therefore, the research on the extracardiac mechanisms of HFpEF has certain implications for model construction, mechanism research, and treatment strategy formulation.


Subject(s)
Humans , Heart Failure/diagnosis , Stroke Volume/physiology , Myocardium/metabolism , Cardiomyopathies/metabolism , Hypertension , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL