Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Biomedical Engineering ; (6): 435-442, 2018.
Article in Chinese | WPRIM | ID: wpr-687611

ABSTRACT

To locate the nuclei in hematoxylin-eosin (HE) stained section images more simply, efficiently and accurately, a new method based on distance estimation is proposed in this paper, which shows a new mind on locating the nuclei from a clump image. Different from the mainstream methods, proposed method avoids the operations of searching the combined singles. It can directly locate the nuclei in a full image. Furthermore, when the distance estimation built on the matrix sequence of distance rough estimating (MSDRE) is combined with the fact that a center of a convex region must have the farthest distance to the boundary, it can fix the positions of nuclei quickly and precisely. In addition, a high accuracy and efficiency are achieved by this method in experiments, with the precision of 95.26% and efficiency of 1.54 second per thousand nuclei, which are better than the mainstream methods in recognizing nucleus clump samples. Proposed method increases the efficiency of nuclear location while maintaining the location's accuracy. This can be helpful for the automatic analysis system of HE images by improving the real-time performance and promoting the application of related researches.

2.
Journal of Biomedical Engineering ; (6): 1019-1023, 2004.
Article in Chinese | WPRIM | ID: wpr-327156

ABSTRACT

This paper presents a new impulse noise filter based on pulse coupled neural networks according to the apparent difference of gray value between noised pixels and the pixels around them. Comparing with the state-of-the-art denoised PCNN filter, the step by step modifying algorithm based on PCNN also, the new PCNN filter suggested in this paper costs less computation and less execution time. At the same time this new PCNN filter has been compared with other nonlinear filters, such as median filter, the stack filter based on omnidirectional structural elements constrains, the Omnidirectional morphology Open-Closing maximum filter (OOCmax) and the Omnidirectional morphology Close-Opening minimum (OCOmin) filter. The results of simulation shows that this algorithm is superior to standard median filter, the state-of-the-art PCNN filter, the maximal, minimal morphological filter with omnidirectional structuring elements, and the optimal stack filter based on omnidirectional structural elements constrains in the aspect of the impulse noise removal. What is more important is that this algorithm can keep the details of images more effectively.


Subject(s)
Humans , Computer Simulation , Neural Networks, Computer , Neurons , Cell Biology , Plant Cells , Pulse , Signal Processing, Computer-Assisted
3.
Journal of Biomedical Engineering ; (6): 487-492, 2002.
Article in Chinese | WPRIM | ID: wpr-340986

ABSTRACT

This paper describes the state and the development of the application of the modern and traditional image segmentation technology in cell slice image segmentation. It includes edge detection, regional segmentation, wavelet transform, fuzzy mathematics, artificial neural networks, morphological image segmentation and so on. At last, the paper summaries that it is difficult to generally segmentate any kind of biological cell slice image automatically because of the complex structure of cell and cell slice image is not even gray distributed. It should be pointed out that general automatic cell slice image segmentation will be achieved only if visual mathematics model corresponding to mammalian vision systems is setup entirely.


Subject(s)
Algorithms , Cytological Techniques , Fuzzy Logic , Image Processing, Computer-Assisted , Methods , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL