Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Integrative Medicine ; (12): 334-343, 2020.
Article in English | WPRIM | ID: wpr-829097

ABSTRACT

OBJECTIVE@#To investigate the effects of Aurantii Fructus Immaturus (Zhishi, ZS) and Atractylodis Macrocephalae Rhizoma (Baizhu, BZ)-containing serum on glutamate-induced autophagy in rat colonic interstitial cells of Cajal (ICCs) and to analyze the underlying mechanism.@*METHODS@#Rat colonic ICCs cultured in vitro were identified by fluorescence and then stimulated with glutamic acid (5 mmol/L) for 24 h to establish a cell model of autophagy. The cells were then treated with different concentrations of ZSBZ-containing serum or rat serum. The viability of the ICCs was detected with cell counting kit-8 assays, and cell apoptosis rates were examined with flow cytometry. The ultrastructure and autophagosomes in the ICCs were observed using transmission electron microscopy. The effects of ZSBZ-containing serum on apoptosis-associated mediators were assessed by Western blotting and real-time quantitative polymerase chain reaction. In addition, microtubule-associated protein light chain 3 (LC3), p-phosphoinositide 3-kinase (p-PI3K), p-Akt and p-mammalian target of rapamycin (p-mTOR) expression was detected via Western blotting analysis.@*RESULTS@#Compared to those in the model group, ICC viability and apoptosis rates were significantly increased by ZSBZ-containing serum (P < 0.05). In addition, the expression levels of Beclin-1, LC3, p-PI3K, p-Akt and p-mTOR were significantly lower (P < 0.05) and Bcl-2 expression was higher in the ZSBZ-containing serum treatment groups than in the model group (P < 0.05).@*CONCLUSION@#Our findings demonstrated that ZSBZ protects glutamic acid-stimulated ICCs, and this beneficial effect may be mediated by a reduction in autophagy via inhibition of the PI3K/Akt/mTOR pathway.

2.
Chinese journal of integrative medicine ; (12): 554-560, 2019.
Article in English | WPRIM | ID: wpr-776596

ABSTRACT

Plants are known to possess plenty of pharmacological activities as a result of various phytoconstituents. Tetramethylpyrazine (TMP), one of the most widely used medicinal compound isolated from traditional Chinese herb, is usually employed for anti-oxidation, anti-inflammation, anti-platelet aggregation, anti-lipid, anti-fibrosis, as well as activating blood, removing stasis, dilating small arteries, improving microcirculation and antagonizing calcium. In the present paper, the anti-adhesion effect of TMP were reviewed. TMP was found to play a multi-target and muti-link role in anti-adhesion by inhibiting hyperplasia of collagen and overexpression of adhesion-related factors and reducing the concentration of white blood cells and fibrin in plasma. Because previous studies mostly focused on in vitro experiments and animal experiments, there is an urgent need for clinical research with abundant indicators to further prove its anti-adhesion potency. Future basic research should concentrate on the development of TMP as a biological material.

3.
Chinese journal of integrative medicine ; (12): 629-634, 2016.
Article in English | WPRIM | ID: wpr-287112

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of ligustrazine nanoparticles nano spray (LNNS) on transforming growth factor β (TGF-β)/Smad signal protein of rat peritoneal mesothelial cells (RPMC) induced by tumor necrosis factor α (TNF-α), and the anti-adhesion mechanism of LNNS in the abdominal cavity.</p><p><b>METHODS</b>The primary culture and subculture of rat peritoneal mesothelial cells (RPMC) was processed by trypsin digestion method in vitro. The third generation was identifified for experiment and divided into 5 groups: a blank group: RPMC without treatment; a control group: RPMC stimulated with TNF-α; RPMC treated by a low-dosage LNNS group (2.5 mg/L); RPMC treated by a medium-dosage LNNS group (5 mg/L); and RPMC treated by a high-dosage LNNS group (10 mg/L). Reverse transcription-polymerase chain reaction was applied to test the expression of fifibronectin, collagen I (COL-I), TGF-β mRNA, and Western blot method to test the Smad protein 7 expression of RPMC.</p><p><b>RESULTS</b>Compared with the blank group, a signifificant elevation in fifibronectin (FN), COL-I and TGF-β mRNA expression of RPMC were observed in the control group (P<0.05). Compared with the control group, LNNS suppressed the expressions of FN, COL-I and TGF-β mRNA in a concentrationdependent manner (P<0.05). The expression of Smad7 protein of RPMC was down-regulated by TNF-α stimulation, and up-regulated with the increase of LNNS dose (P<0.05).</p><p><b>CONCLUSIONS</b>TNF-α may induce changes in RPMC's viability, leading to peritoneal injury. LNNS could reverse the induction of fifibrosis related cytokine FN, COL-I and TGF-β, up-regulating the expression of Smad7 by TNF-α in RPMC, thus attenuate peritoneal injury by repairing mesothelial cells.</p>


Subject(s)
Animals , Male , Collagen Type I , Genetics , Metabolism , Epithelium , Metabolism , Fibronectins , Metabolism , Nanoparticles , Chemistry , Particle Size , Peritoneal Cavity , Cell Biology , Pyrazines , Pharmacology , RNA, Messenger , Genetics , Metabolism , Rats, Sprague-Dawley , Signal Transduction , Smad Proteins , Metabolism , Transforming Growth Factor beta , Genetics , Metabolism , Tumor Necrosis Factor-alpha , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL