Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1433-1442, 2016.
Article in Chinese | WPRIM | ID: wpr-243710

ABSTRACT

Flap endonuclease 1 (FEN1) is an endonuclease that catalyzes invasive reaction. It can be used in signal-amplification reaction-based nucleic acid assay. However, the application of FEN1 is hampered due to the lack of detailed protocols to express and purify the enzyme, and to quantify the enzyme activity. In this paper, the DNA fragment coding the gene of FEN1 from Archaeoglobus fulgidus was synthesized, and inserted into the plasmid of pET24a(+) to express recombinant FEN1 with His-tag. After optimizing the expression, detailed expression protocol of FEN1 was obtained by culturing the recombinant E. coli at 37 ℃ with 200 r/min of shaking for 8 h, followed by inducing with 0.05 mmol/L IPTG at 37 ℃ for 11 h. The purified recombinant FEN1 with the molecular mass of 38 kDa was obtained by Ni-affinity chromatography. Moreover, we developed a accurate quantification method with fluorescence-labelled probes. Finally, the recombinant FEN1 was used in real-time PCR coupled with high specific invader assay for aldh2 gene genotyping to obtain the correct typing results, indicating that the recombinant FEN1 can be used in gene polymorphism detection. We provide a reliable enzyme for developing invasive reaction-based nucleic acid assay.

2.
Chinese Journal of Biotechnology ; (12): 1513-1520, 2011.
Article in Chinese | WPRIM | ID: wpr-304550

ABSTRACT

We expressed recombinant single-stranded DNA-binding protein (r-SSBP) from Escherichia coli with the molecular weight of 24-kDa by using genetic engineering strategy, and demonstrated the single-stranded DNA (ssDNA)-binding activity of r-SSBP by electrophoretic mobility shift assay (EMSA). To further characterize r-SSBP, we studied the effects of r-SSBP on melting temperature (T(m)) of DNA. The results showed that r-SSBP could bind to ssDNA, and lower the T(m) of DNA, especially for single-base mismatched DNA. Therefore, r-SSBP significantly increased the T(m) difference between single-base mismatched DNA and perfect matched DNA. These results are very beneficial for single-nucleotide polymorphism detection. Moreover, we applied r-SSBP in high sensitive pyrosequencing system developed by our group. The results suggest that the r-SSBP decreased non-specific signals, corrected the proportion of signal peak height and improved the performance of pyrosequencing.


Subject(s)
DNA-Binding Proteins , Genetics , Diphosphates , Metabolism , Escherichia coli , Genetics , Metabolism , Genetic Vectors , Recombinant Proteins , Genetics , Sequence Analysis, DNA , Methods
SELECTION OF CITATIONS
SEARCH DETAIL