Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Journal of Southern Medical University ; (12): 245-248, 2010.
Article in Chinese | WPRIM | ID: wpr-269582

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of doxapram on the respiratory rhythmical discharge activity (RRDA) in the brainstem slices of neonatal rats.</p><p><b>METHODS</b>Thirty neonatal SD rats (of either sex, 0-3 days old) were randomly divided into 6 equal groups (groups I-VI), and the brainstem slices which contained the medial region of the nucleus retrofacialis (mNRF) were prepared. All the slices were perfused with modified Kreb's solution (MKS), and in group I (control group), the slices were perfused with MKS only; in groups II to IV, the slices were perfused with doxapram in MKS continuously at the concentrations of 2, 5, and 10 micromol/L, respectively; in groups V and VI, the slices were perfused with 20 micromol/L propofol and 20 micromol/L propofol plus 5 micromol/L doxapram, respectively. The RRDA in the hypoglossal nerve was recorded by suction electrode. The discharge time course of the inspiratory (TI), expiratory (TE), respiratory cycle (RC) and integral amplitude of the inspiratory discharge (IA) were recorded at 1, 3, 5, 10, 15, and 30 min after the application of the drugs.</p><p><b>RESULTS</b>The hypoglossal nerve in groups I, II and VI showed no significant changes of RRDA in the entire course of the experiment (P>0.05). In groups III and IV, the TI, IA increased and TE decreased significantly 5 min after doxapram application (P<0.05), and the RC was shortened only at 10 min. In group V, the TI and IA decreased and the RC and TE increased significantly after the drug application (P<0.05).</p><p><b>CONCLUSION</b>Doxapram (>5 micromol/L ) can directly stimulate the RRDA and prevent propofol-induced inhibitory effects in the brainstem slice of neonatal rats, and the effects are mediated by its actions upon the inspiratory neurons in the mNRF.</p>


Subject(s)
Animals , Female , Male , Rats , Animals, Newborn , Doxapram , Pharmacology , Electrophysiological Phenomena , In Vitro Techniques , Medulla Oblongata , Physiology , Random Allocation , Rats, Sprague-Dawley , Respiration , Respiratory System Agents , Pharmacology
2.
Journal of Southern Medical University ; (12): 1813-1816, 2010.
Article in Chinese | WPRIM | ID: wpr-330835

ABSTRACT

<p><b>OBJECTIVE</b>To explore the role of group II metabotropic glutamate receptors in the modulation of basic respiratory rhythm.</p><p><b>METHODS</b>Neonatal (0-3 days) SD rats of either sex were used. The medulla oblongata brain slice containing the medial region of the nucleus retrofacialis (mNRF) and the hypoglossal nerve rootlets was prepared, and the surgical procedure was performed in the modified Kreb's solution (MKS) with continuous carbogen (95% O2 and 5% CO2) within 3 min. The brain slices were quickly transferred to a recording chamber and continuously perfused with oxygen-saturated MKS at a rate of 4-6 ml/min at 27-29 degrees celsius. Eighteen medulla oblongata slices were divided into 3 groups and treated for 10 min with group II metabotropic glutamate receptor-specific agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) (at concentrations of 10, 20, 50 micromol/L), group II metabotropic glutamate receptor antagonist (2S)-alpha-ethylglutamic acid (EGLU) (300 micromol/L), or APDC (50 micromol/L)+EGLU (300 micromol/L) after a 10 min APDC (50 micromol/L) application. Respiratory rhythmical discharge activity (RRDA) of the rootlets of the hypoglossal nerve was recorded by suction electrodes.</p><p><b>RESULTS</b>APDC produced a dose-dependent inhibitory effect on the RRDA, prolonging the respiratory cycle and expiratory time and decreasing the integral amplitude and inspiratory time. EGLU induced a significant decrease in the respiratory cycle and expiratory time. The effect of APDC on the respiratory rhythm was partially reversed by the application of APDC+EGLU.</p><p><b>CONCLUSION</b>Group II metabotropic glutamate receptors are probably involved in the modulation of the RRDA in isolated neonatal rat brainstem slice.</p>


Subject(s)
Animals , Rats , Animals, Newborn , In Vitro Techniques , Medulla Oblongata , Physiology , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate , Physiology , Respiratory Center , Physiology
3.
Journal of Southern Medical University ; (12): 9-12, 2009.
Article in Chinese | WPRIM | ID: wpr-339080

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the role of dopamine-1 receptor in the modulation of basic respiration rhythm.</p><p><b>METHODS</b>Newborn SD rat (0-3 days, n=20) brain stem slices containing the medial region of the nucleus retrofacialis (mNRF) were prepared with the hypoglossal nerve roots retained. The respiratory rhythmical discharge activity (RRDA) of the hypoglossal nerve was recorded using suction electrodes on these preparations, and the effects of dopamine-1 receptor on RRDA were investigated by application of the specific agonist of dopamine-1 receptor A68930 at different concentrations (0, 1, 2, and 5 micromol/L) in the perfusion solution.</p><p><b>RESULTS</b>The respiratory cycles (RC) and the expiratory time (TE) decreased progressively with gradual increment of the integrated amplitude (IA) after A68930 administration, and their changes were the most conspicuous at 5 min after the administration. A68930 at the concentrations of 2 and 5 micromol/L resulted in the most obvious changes in RC, TE, and IA (P<0.05), but IA exhibited no significant variation at 1 min after perfusion with 2 micromol/L A68930 (P>0.05). RC and TE were gradually shortened after treatment with increasing concentrations of A68930, which also caused gradual increment of IA, and at the concentration of 5 micromol/L, RC, TE, and IA all showed the most obvious changes (P<0.01).</p><p><b>CONCLUSIONS</b>Dopamine-1 receptor plays a role in the modulation of RRDA in isolated neonatal rat brainstem slice. A68930 may increase the frequency of respiration by shortening TE and enhance the respiratory activity by increasing the amplitude of inspiratory discharge of the respiratory neurons.</p>


Subject(s)
Animals , Rats , Animals, Newborn , Cell Separation , Chromans , Pharmacology , Dopamine Agonists , Pharmacology , In Vitro Techniques , Medulla Oblongata , Cell Biology , Physiology , Neurons , Cell Biology , Rats, Sprague-Dawley , Receptors, Dopamine , Physiology , Respiration
4.
Journal of Southern Medical University ; (12): 2410-2413, 2009.
Article in Chinese | WPRIM | ID: wpr-325103

ABSTRACT

<p><b>OBJECTIVE</b>To explore the role of glial cell metabolism in the generation and regulation of central respiratory rhythm.</p><p><b>METHODS</b>The medulla oblongata slices (600-700 microm) containing the medial region of the nucleus retrofacialis (mNRF) with the hypoglossal nerve rootlets retained from 12 neonatal (0-3 days) Sprague-Dawley rats were prepared and perfused with modified Kreb's solution (MKS). Upon recording of respiratory rhythmical discharge activity (RRDA) of the rootlets of the hypoglossal nerve, the brain slices were treated with glial cell metabolism antagonist L-methionine sulfoximine (L-MSO, 50 micromol/L) for 20 min followed by application of glial cell metabolism agonist L-glutamine (L-GLN, 30 micromol/L) for 20 min, or with L-MSO for 20 min with additional L-GLN for 20 min. The changes in the RRDA of the rootlets of the hypoglossal nerve in response to the treatments were recorded.</p><p><b>RESULTS</b>L-MSO prolonged the respiratory cycle (RC) and expiratory time (TE), and reduced the integral amplitude (IA) and the inspiratory time (TI) in the brain slices. L-GLN induced a significant decrease in RC and TE, but IA and TI showed no obvious variations. The effect of L-MSO on the respiratory rhythm was reversed by the application of L-GLN.</p><p><b>CONCLUSION</b>Glial cell metabolism may play an important role in the modulation of RRDA in neonatal rat brainstem.</p>


Subject(s)
Animals , Rats , Animals, Newborn , Glutamine , Pharmacology , In Vitro Techniques , Medulla Oblongata , Metabolism , Physiology , Methionine Sulfoximine , Pharmacology , Neuroglia , Metabolism , Periodicity , Rats, Sprague-Dawley , Respiration
5.
Acta Physiologica Sinica ; (6): 704-708, 2008.
Article in Chinese | WPRIM | ID: wpr-302501

ABSTRACT

To explore the role of D(1)-dopamine receptor in the modulation of basic respiratory rhythm, neonatal (0-3 d) Sprague-Dawley rats of either sex were used. The medulla oblongata slice was prepared and the surgical procedure was performed in the modified Kreb's solution (MKS) with continuous ventilating 95% O2 and 5% CO2 and ended in 3 min. A 600-700 mum single transverse slice containing the hypoglossal nerve roots and some parts of the ventral respiratory group was cut. The preparation was quickly transferred to a recording chamber and continuously perfused with oxygen-saturated MKS at a rate of 4-6 mL/min at 27-29 degrees C. Ten medulla oblongata slice preparations were randomly divided into two groups. In group I, the preparations were perfused with perfusion solution containing D(1)-dopamine receptor specific agonist cis-(+/-)-1-(Aminomethyl)-3,4-dihydro-3-phenyl-1H-2-Benzopyran-5,6-Diolhy-drochlo-ride (A68930, 5 mumol/L) for 10 min first; after washing out, the preparations were then perfused with perfusion solution containing D(1)-dopamine receptor specific antagonist R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390, 2 mumol/L) for 10 min. In group II, after perfusion with A68930 for 10 min, the preparations were perfused with additional A68930 + SCH-23390 for 10 min. Respiratory rhythmical discharge activity (RRDA) of the rootlets of hypoglossal nerve was recorded by suction electrodes. The results showed that A68930 shortened the respiratory cycle (RC) and expiratory time (TE) with an increase in the integral amplitude (IA). However, SCH-23390 significantly prolonged RC and TE, and decreased IA with a decrease in inspiratory time (TI). Moreover, the effect of A68930 on the respiratory rhythm was partially reversed by additional application of A68930 + SCH-23390. These results indicate that D(1)-dopamine receptor is possibly involved in the modulation of the RRDA in the isolated neonatal rat brainstem slice.


Subject(s)
Animals , Female , Male , Rats , Animals, Newborn , Benzazepines , Pharmacology , Biological Clocks , Chromans , Pharmacology , In Vitro Techniques , Medulla Oblongata , Physiology , Rats, Sprague-Dawley , Receptors, Dopamine , Physiology , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL