Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Epidemiology ; (12): 271-274, 2015.
Article in Chinese | WPRIM | ID: wpr-240113

ABSTRACT

<p><b>OBJECTIVE</b>To identify the epidemiology and etiology characteristics of Tibetan sheep plague in Qinghai plateau.</p><p><b>METHODS</b>The background materials of Qinghai Tibetan sheep plague found during 1975 to 2009 were summarized, the regional, time and interpersonal distribution, infection routes, ecological factors for the spread were used to analyze; followed by choosing 14 Yersinia pestis strains isolated from such sheep for biochemical test, toxicity test, virulence factors identification, plasmid analysis, and DFR genotype.</p><p><b>RESULTS</b>From 1975 to 2009, 14 Yersinia pestis strains were isolated from Tibetan sheep in Qinghai province. Tibetan sheep, as the infection source, had caused 10 cases of human plague, 25 plague patients, and 13 cases of death. All of the initial cases were infected due to eating Tibetan sheep died of plague; followed by cases due to contact of plague patients, while all the initial cases were bubonic plague. Cases of bubonic plague developed into secondary pneumonic plague and septicemia plague were most popular and with high mortality. Most of the Tibetan sheep plague and human plague occurred in Gannan ecological zone in southern Gansu province, which was closely related to its unique ecological and geographical landscape. Tibetan sheep plague coincided with human plague caused by Tibetan sheep, especially noteworthy was that November (a time for marmots to start their dormancy) witnesses the number of Yersinia pestis strains isolated from Tibetan sheep and human plague cases caused by Tibetan sheep. This constituted the underlying cause that the epidemic time of Tibetan sheep plague lags obviously behind that of the Marmot plague. It was confirmed in the study that all the 14 strains were of Qinghai-Tibet Plateau ecotype, with virulence factors evaluation and toxicity test demonstrating strains as velogenic. As found in the (Different Region) DFR genotyping, the strains isolated from Yushu county and Zhiduo county were genomovar 5, the two strain isolated from Nangqian county were genomovar 5 and genomovar 7, while those isolated Delingha region were genomovar 8.</p><p><b>CONCLUSION</b>Tibetan sheep were vulnerable to plague infection, hence causing human plague as the infectious source. The Yersinia pestis strains isolated from Tibetan sheep plague carried pathogen characteristics of Qinghai-Tibet plateau plague, developing many new characteristics of such plague.</p>


Subject(s)
Animals , Humans , Ecology , Genotype , Geography , Marmota , Plague , Epidemiology , Plasmids , Sheep , Microbiology , Tibet , Epidemiology , Yersinia pestis
2.
Chinese Journal of Preventive Medicine ; (12): 124-127, 2014.
Article in Chinese | WPRIM | ID: wpr-298956

ABSTRACT

<p><b>OBJECTIVE</b>To analyze the results of etiology and serology of plague among human and infected animals in Qinghai province from 2001 to 2010.</p><p><b>METHODS</b>Thirty-seven cases of human infected with plague, 53 541 different animal samples, 5 685 sets of vector insects flea and 49 039 different animal serum samples were obtained between 2001 and 2010. A total of 7 811 samples of serum from healthy farmers and herdsmen in 14 counties in Qinghai from 2005 to 2007 were collected. Yersinia pestis (Y. pestis) were detected in visceral and secretions from human, infected animals and vector insects, respectively. Plague antigen was detected by reverse indirect hemagglutination assay (RIHA) in those samples. Indirect hemagglutination assay (IHA) was used to test plague FI antibody in serum of human and infected animals.</p><p><b>RESULTS</b>37 human plague cases were confirmed, 21 strains of plague Y. pestis were isolated from human cases and 14 positive were detected out. 133 of 7 811 samples of human serum were IHA positive, with the positive rate at 1.7%. A total of 146 strains of plague were isolated from infected animals and vector insects, 99 out of which were from infected animals, with a ratio of Marmota himalayan at 72.7% (72/99) and the other 47 were from vector insects, with a ratio of callopsylla solaris at 68.1% (32/47). The number of IHA and PIHA positive were 300 and 10, respectively. A total of 3 animals and 3 insects species were identified as new epidemic hosts for plague. The natural plague focus of Microtus fuscus was discovered and confirmed and coexisted with natural focus of Marmota himalayan in Chengduo county, Yushu prefecture. The epidemic situation of plague is distributed mainly in Haixi, Yushu and Hainan prefectures.</p><p><b>CONCLUSION</b>From 2001 to 2010, animal infected with plague was detected in successive years and human plague was very common in Qinghai. New infected animals and vector insects species and new epidemic areas were confirmed, hence the trend of plague prevalence for humans and animals is very active in Qinghai province.</p>


Subject(s)
Animals , Humans , Antibodies, Bacterial , Blood , China , Epidemiology , Disease Vectors , Insect Vectors , Microbiology , Plague , Epidemiology , Yersinia pestis , Classification
3.
Chinese Journal of Microbiology and Immunology ; (12): 602-606, 2009.
Article in Chinese | WPRIM | ID: wpr-380764

ABSTRACT

Objective To purify native F1 antigen from E pestis EV76 strain and determine its ef-ficacy against Y. pestis. Methods A new purification method was developed by the substitution of physical disruption ( glass beads) for organic solvent ( acetone and toluene) one, followed by a combination of ammo-nium sulfate fractionation and SephacrylS-200HR column filtration chromatography. Groups of mice were im-munized with F1 antigen adsorbed to 25% aluminum hydroxide in PBS by intramuscular route. The immu-nized animals were challenged subeutaneously(s, c. ) with 104 CFU of Y. pestis strain 141 at 18 weeks after the primary immunization. Results There was no IgG titre difference between two groups of mice with one-dose immunization, whereas in the two-dose immunization groups, the group F1-40 μg induced a statistically higher antibody titre than the group F1-20 μg. Complete protection was observed for animals immunized with purified F1 antigen by s.c. route. In contrast, the control mice immunized with aluminum hydroxide suc-cumbed to a same dose of Y. pestis 141 challenge. Conclusion This purification strategy is a simple and ef-fective, and can be operated in a large scale. Native F1 antigen extracted from Y. pestis EV76 is highly im-munagenic, and can be used as a key antigen component to develop sub-unit vaccine of plague.

SELECTION OF CITATIONS
SEARCH DETAIL