Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 928-937, 2023.
Article in Chinese | WPRIM | ID: wpr-1008918

ABSTRACT

Accurate segmentation of pediatric echocardiograms is a challenging task, because significant heart-size changes with age and faster heart rate lead to more blurred boundaries on cardiac ultrasound images compared with adults. To address these problems, a dual decoder network model combining channel attention and scale attention is proposed in this paper. Firstly, an attention-guided decoder with deep supervision strategy is used to obtain attention maps for the ventricular regions. Then, the generated ventricular attention is fed back to multiple layers of the network through skip connections to adjust the feature weights generated by the encoder and highlight the left and right ventricular areas. Finally, a scale attention module and a channel attention module are utilized to enhance the edge features of the left and right ventricles. The experimental results demonstrate that the proposed method in this paper achieves an average Dice coefficient of 90.63% in acquired bilateral ventricular segmentation dataset, which is better than some conventional and state-of-the-art methods in the field of medical image segmentation. More importantly, the method has a more accurate effect in segmenting the edge of the ventricle. The results of this paper can provide a new solution for pediatric echocardiographic bilateral ventricular segmentation and subsequent auxiliary diagnosis of congenital heart disease.


Subject(s)
Adult , Humans , Child , Heart Ventricles/diagnostic imaging , Echocardiography , Image Processing, Computer-Assisted
2.
Journal of Biomedical Engineering ; (6): 621-630, 2018.
Article in Chinese | WPRIM | ID: wpr-687586

ABSTRACT

Rapid and accurate recognition of human action and road condition is a foundation and precondition of implementing self-control of intelligent prosthesis. In this paper, a Gaussian mixture model and hidden Markov model are used to recognize the road condition and human motion modes based on the inertial sensor in artificial limb (lower limb). Firstly, the inertial sensor is used to collect the acceleration, angle and angular velocity signals in the direction of , and axes of lower limbs. Then we intercept the signal segment with the time window and eliminate the noise by wavelet packet transform, and the fast Fourier transform is used to extract the features of motion. Then the principal component analysis (PCA) is carried out to remove redundant information of the features. Finally, Gaussian mixture model and hidden Markov model are used to identify the human motion modes and road condition. The experimental results show that the recognition rate of routine movement (walking, running, riding, uphill, downhill, up stairs and down stairs) is 96.25%, 92.5%, 96.25%, 91.25%, 93.75%, 88.75% and 90% respectively. Compared with the support vector machine (SVM) method, the results show that the recognition rate of our proposed method is obviously higher, and it can provide a new way for the monitoring and control of the intelligent prosthesis in the future.

SELECTION OF CITATIONS
SEARCH DETAIL