Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Trauma ; (12): 180-184, 2014.
Article in Chinese | WPRIM | ID: wpr-444811

ABSTRACT

Objective To construct genipin-crosslinked rat acellular spinal cord scaffolds and evaluate their enzymatic degradation rate,biomechanical properties and cytotoxicity.Methods Rat spinal cord scaffolds were decellularized by chemical extraction and chemically crosslinked with 5 g/L genipin solution.Micro-structure of the uncrosslinked and genipin-crosslinked acellular spinal cord scaffolds were observed by HE staining and scanning electron microscopy and properties of pore size,porosity,water ratio,and degradation rate in 2.5 g/L trypsin enzyme solution were examined.Ultimate tensile strength and elastic modulus of normal rat thoracic spinal cord,uncrosslinked and genipin-crosslinked acellular spinal cord scaffolds were determined on Instron mechanical testing instrument.Rat bone marrow mesenchymal stem cells were cultured in lixivium of uncrosslinked and genipin-crosslinked acellular spinal cord scaffolds and MTT assay for relative cell growth rate was test to evaluate the cytotoxicity of scaffolds.Results The uncrosslinked and the genipin-crosslinked acellular spinal cord scaffolds possessed a similar three-dimensional mesh-porous structure with a mean pore diameter about 30 μm and a porosity over 80%,but there was a statistical difference between the two groups(P > 0.05).Water ratio of genipincrosslinked scaffolds was (229.7 ± 12.5) %,far lower than (283.4 ± 11.2) % of uncrosslinked scaffolds (P < O.05) ; genipin-crosslinked acellular spinal cord scaffolds had lower weight loss at each time point than the uncrosslinked acellular spinal cord scaffolds (P < 0.05),but the stability in trypsin,ultimate tensile strength and elastic modulus of acellular spinal cord scaffolds were significantly enhanced by genipin-crosslinking (P < 0.05).Furthermore,no obvious cytotoxicity was observed in the uncroslinked and genipin-crosslinked scaffolds.Conclusions Rat acellular spinal cord scaffolds present no obvious change in structure after genipin-crosslinking,but there is significant improvement in the biomechanical properties and ability against enzymatic degradation and no marked cytotoxicity.Hence,the genipincrosslinked scaffolds are promising in tissue engineering for spinal injury.

SELECTION OF CITATIONS
SEARCH DETAIL