Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-1043344

ABSTRACT

Rare diseases are characterized by a low prevalence, which often means that patients with such diseases are undiagnosed and do not have effective treatment options. Neurodevelopmental and neurological disorders make up around 40% of rare diseases and in the past decade, there has been a surge in the identification of genes linked to these conditions. This has created the need for model organisms to reveal mechanisms and to assess therapeutic methods. Different model animals have been employed, like Caenorhabditis elegans, Drosophila, zebrafish, and mice, to investigate the rare neurological diseases and to identify the causative genes. While the zebrafish has become a popular animal model in the last decade, mainly for studying brain development, understanding neural circuits, and conducting chemical screens, the mouse has been a very well-known model for decades. This review explores the strengths and limitations of using zebrafish as a vertebrate animal model for rare neurological disorders, emphasizing the features that make this animal model promising for the research on these disorders.

2.
Laboratory Animal Research ; : 156-184, 2021.
Article in English | WPRIM | ID: wpr-902660

ABSTRACT

Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.

3.
Laboratory Animal Research ; : 156-184, 2021.
Article in English | WPRIM | ID: wpr-894956

ABSTRACT

Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.

SELECTION OF CITATIONS
SEARCH DETAIL