Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Annals of Surgical Treatment and Research ; : 119-124, 2017.
Article in English | WPRIM | ID: wpr-160324

ABSTRACT

PURPOSE: The pedicled, descending-branch muscle-sparing latissimus dorsi (MSLD) flap has been widely used for breast reconstruction following total mastectomy. However, the superiority of the MSLD flap compared to the conventional latissimus dorsi (CLD) flap in preventing seroma formation has not been demonstrated. This study compares the morbidities related to seroma formation following pedicled MSLD flap and CLD flap breast reconstruction. METHODS: A total of 15 women who underwent partial mastectomy and immediate partial breast reconstruction with MSLD flaps were compared with 15 women under identical conditions with CLD flap breast reconstruction. The medical records were reviewed for both complications and demographic data. The authors compared morbidity, including donor-site seroma, total volume of drain discharge, indwelling period of drainage, and length of hospital stay following both MSLD flap and CLD flap breast reconstruction. RESULTS: The demographic data of the 2 groups were not significantly different. Donor-site seroma occurred in 2 MSLD patients (13.3%) and in 6 CLD patients (40.0%). The total volume of the drain discharge and the indwelling period of drainage at donor site were significantly lower in the MSLD group. The length of hospital stay was significantly shorter (by approximately a day and a half) for the MSLD group. CONCLUSION: The MSLD flap, with its low complication rate and associated minimal functional and aesthetic deficits at the donor site, may be a useful option for small breast reconstruction if earlier discharge from hospital is demanded.


Subject(s)
Female , Humans , Breast , Drainage , Length of Stay , Mammaplasty , Mastectomy, Segmental , Mastectomy, Simple , Medical Records , Seroma , Superficial Back Muscles , Tissue Donors
2.
Environmental Health and Preventive Medicine ; : 157-160, 2003.
Article in Japanese | WPRIM | ID: wpr-361488

ABSTRACT

One of the best approaches against cancer is prevention. Inactivation of the p53 or p16INK4a genes has been extensively reported in most human cancer cells. Both p53 and p16INK4a function as tumor suppressors. Therefore, functional restoration of these molecules is considered to be one of the most useful methods for cancer prevention and therapy. We have proposed a concept termed ‘gene-regulating chemoprevention and chemotherapy’ regarding the above pathway. This concept assumes that transcriptional regulation by drugs on tumor-suppressor genes, downstream target genes or functionally similar genes (for example, family genes) of the tumor-suppressor genes would contribute to the prevention of human malignancies. Histone deacetylase (HDAC) inhibitors have been shown to be potent inducers of growth arrest, differentiation and apoptotic cell death. Previously, we demonstrated that HDAC inhibitors, such as sodium butyrate and trichostatin A (TSA), transcriptionally induce the cyclin-dependent kinase inhibitor p21WAF1/Cip1, a downstream target gene of p53, in a p53-independent manner. Furthermore, we have recently shown that HDAC inhibitors activate Gadd45, another downstream target gene of p53, and p19INK4d, a gene functionally similar to p16INK4a. Our results, taken together with previous findings, suggest that HDAC inhibitors may be one of the most attractive and promising agents for ‘gene-regulating chemoprevention’ and ‘molecular-targeting prevention’ of cancer.


Subject(s)
Disease Prevention , Neoplasms , Chemoprevention , Genes
3.
Environmental Health and Preventive Medicine ; : 157-160, 2003.
Article in English | WPRIM | ID: wpr-332081

ABSTRACT

One of the best approaches against cancer is prevention. Inactivation of the p53 or p16(INK4a) genes has been extensively reported in most human cancer cells. Both p53 and p16(INK4a) function as tumor suppressors. Therefore, functional restoration of these molecules is considered to be one of the most useful methods for cancer prevention and therapy. We have proposed a concept termed 'gene-regulating chemoprevention and chemotherapy' regarding the above pathway. This concept assumes that transcriptional regulation by drugs on tumor-suppressor genes, downstream target genes or functionally similar genes (for example, family genes) of the tumor-suppressor genes would contribute to the prevention of human malignancies. Histone deacetylase (HDAC) inhibitors have been shown to be potent inducers of growth arrest, differentiation and apoptotic cell death. Previously, we demonstrated that HDAC inhibitors, such as sodium butyrate and trichostatin A (TSA), transcriptionally induce the cyclin-dependent kinase inhibitor p21(WAF1/Cip1), a downstream target gene of p53, in a p53-independent manner. Furthermore, we have recently shown that HDAC inhibitors activate Gadd45, another downstream target gene of p53, and p19(INK4d), a gene functionally similar to p16(INK4a). Our results, taken together with previous findings, suggest that HDAC inhibitors may be one of the most attractive and promising agents for 'gene-regulating chemoprevention' and 'molecular-targeting prevention' of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL