Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Environmental Health and Preventive Medicine ; : 141-150, 2002.
Article in English | WPRIM | ID: wpr-284978

ABSTRACT

The cytotoxic effects evoked by exposure to environmental chemicals having electrophilic properties are often attributable to covalent attachment to intracellular macromolecules through sulfhydryl groups or enzyme-mediated redox cycling, leading to the generation of reactive oxygen species (ROS). When huge amounts of ROS form they overwhelm antioxidant defenses resulting in the induction of oxidative stress. Nitric oxide (NO) which plays a crucial role in vascular tone, is formed by endothelial NO synthase (eNOS). Since a decrease in systemic NO production is implicated in the pathophysiological actions of vascular diseases, dysfunction of eNOS by environmental chemicals is associated with cardiopulmonary-related diseases and mortality. In this review, we introduce the mechanism-based toxicities (covalent attachment and redox cycling) of electrophiles. Therefore, this review will focus on the possible mechanisms for the induction of oxidative stress and impairment of NO production caused by environmental chemicals.

2.
Environmental Health and Preventive Medicine ; : 141-150, 2002.
Article in Japanese | WPRIM | ID: wpr-361515

ABSTRACT

The cytotoxic effects evoked by exposure to environmental chemicals having electrophilic properties are often attributable to covalent attachment to intracellular macromolecules through sulfhydryl groups or enzyme-mediated redox cycling, leading to the generation of reactive oxygen species (ROS). When huge amounts of ROS form they overwhelm antioxidant defenses resulting in the induction of oxidative stress. Nitric oxide (NO) which plays a crucial role in vascular tone, is formed by endothelial NO synthase (eNOS). Since a decrease in systemic NO production is implicated in the pathophysiological actions of vascular diseases, dysfunction of eNOS by environmental chemicals is associated with cardiopulmonary-related diseases and mortality. In this review, we introduce the mechanism-based toxicities (covalent attachment and redox cycling) of electrophiles. Therefore, this review will focus on the possible mechanisms for the induction of oxidative stress and impairment of NO production caused by environmental chemicals.


Subject(s)
Oxidative Stress , Economics , Nitric Oxide
SELECTION OF CITATIONS
SEARCH DETAIL