Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 35-40, 2002.
Article in Korean | WPRIM | ID: wpr-169383

ABSTRACT

PURPOSE: To evaluate the NMR relaxation properties and imaging characteristics of tissue-specificity for a newly developed macromolecular MR agent. MATERIALS AND METHODS: Phthalocyanine (PC) was chelated with paramagnetic ion, Mn. 2.01g(5.2 mmol) of Phthalocyanine was mixed with 0.37g (1.4 mmol) of Mn chloride at 310 degrees C for 36 hours and then purified by chromatography (CHC13/CH3OH 98/2 v/v, Rf, 0.76) to obtain 1.04g (46%) of MnPC (molecular weight = 2000d), The T1/T2 relaxivity of MnPC was measured in 1.5T(64 MHz) MR using 0.1 mM MnPC. The MR image characteristics of MnPC was evaluated using spin-echo (TR/TE = 500/14 msec) and gradient-echo (FLASH) (TR/TE = 80/4 msec, flip angle = 60) techniques in 1.5T MR scanner. The images of rabbit liver were obtained every 10 minutes up to 4 hours. To study the effect of concentration on image, 20 mM, 50 mM, 100 mM of MnPC were tested. RESULTS: The relaxivities of MnPC at 1.5T (64MHz) were R1 = 7.28 mM-1S-1, R2 = 55.56 mM-1S-1. Compared to the values of Gd-DTPA (R1[= 4.8 mM-1S-1), R2[= 5.2 mM-1S-1]), both T1/T2 relaxivities of MnPC were higher than those of Gd-DTPA. For both of SE and FLASH techniques, the contrast enhancement reached maximum at 10 minutes after bolus injection and the enhancement continued for more than 2 hours. When compared with small molecular weight liver agents such as Gd-EOB-DTPA, Gd-BOPTA and MnDPDP, MnPC was characterized by more prolonged enhancement time. The time course of MR images also revealed biliary excretion of MnPC. CONCLUSION: We developed a new macromolecular MR agent, MnPC. The relaxivities of MnPC were higher than those of small molecular weight Gd-chelate. Hepatic uptake and biliary excretion of MnPC suggests that this agent is a new liver-specific MR agent.


Subject(s)
Chromatography , Gadolinium DTPA , Liver , Molecular Weight , Relaxation
SELECTION OF CITATIONS
SEARCH DETAIL