Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Annals of Pediatric Endocrinology & Metabolism ; : 40-45, 2015.
Article in English | WPRIM | ID: wpr-115864

ABSTRACT

PURPOSE: Prader-Willi syndrome (PWS) is a well-known genetic disorder, and microdeletion on chromosome 15 is the most common causal mechanism. Several previous studies have suggested that various environmental factors might be related to the pathogenesis of microdeletion in PWS. In this study, we investigated birth seasonality in Korean PWS. METHODS: A total of 211 PWS patients born from 1980 to 2014 were diagnosed by methylation polymerase chain reaction at Samsung Medical Center. Of the 211 patients, 138 were born from 2000-2013. Among them, the 74 patients of a deletion group and the 22 patients of a maternal uniparental disomy (UPD) group were compared with general populations born from 2000 using the Walter and Elwood method and cosinor analysis. RESULTS: There was no statistical significance in seasonal variation in births of the total 211 patients with PWS (chi2=7.2522, P=0.2982). However, a significant difference was found in the monthly variation between PWS with the deletion group and the at-risk general population (P<0.05). In the cosinor model, the peak month of birth for PWS patients in the deletion group was January, while the nadir occurred in July, with statistical significance (amplitude=0.23, phase=1.2, low point=7.2). The UPD group showed the peak birth month in spring; however, this result was not statistically significant (chi2=3.39, P=0.1836). CONCLUSION: Correlation with birth seasonality was identified in a deletion group of Korean PWS patients. Further studies are required to identify the mechanism related to seasonal effects of environmental factors on microdeletion on chromosome 15.


Subject(s)
Humans , Chromosomes, Human, Pair 15 , Methylation , Parturition , Polymerase Chain Reaction , Prader-Willi Syndrome , Seasons , Uniparental Disomy
2.
Journal of Korean Medical Science ; : 911-916, 2015.
Article in English | WPRIM | ID: wpr-210694

ABSTRACT

Patients with Marfan syndrome (MFS) presents with primary skeletal manifestations such as tall stature, chest wall abnormality, and scoliosis. These primary skeletal manifestations affect the growth pattern in MFS. Therefore, it is not appropriate to use normal growth charts to evaluate the growth status of MFS. We aimed to develop disease-specific growth charts for Korean MFS patients and to use these growth charts for understanding the growth patterns in MFS and managing of patients with MFS. Anthropometric data were available from 187 males and 152 females with MFS through a retrospective review of medical records. Disease-specific growth charts were generated and 3, 25, 50, 75, and 97 percentiles were calculated using the LMS (refers to lambda, mu, and sigma, respectively) smoothing procedure for height and weight. Comparisons between MFS patients and the general population were performed using a one-sample t-test. With regard to the height, the 50th percentile of MFS is above the normative 97th percentile in both genders. With regard to the weight, the 50 percentile of MFS is above the normative 75th percentile in male and between the normative 50th percentile and the 75th percentile in female. The disease-specific growth charts for Korean patients with MFS can be useful for monitoring growth patterns, planning the timing of growth-reductive therapy, predicting adult height and recording responses to growth-reductive therapy.


Subject(s)
Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult , Asian People , Body Height , Body Mass Index , Body Weight , Growth Charts , Growth Disorders/physiopathology , Marfan Syndrome/genetics , Microfilament Proteins/genetics , Reference Values , Republic of Korea , Retrospective Studies
3.
Journal of Korean Medical Science ; : 254-260, 2014.
Article in English | WPRIM | ID: wpr-180434

ABSTRACT

Hunter syndrome (or mucopolysaccharidosis type II [MPS II]) arises because of a deficiency in the lysosomal enzyme iduronate-2-sulfatase. Short stature is a prominent and consistent feature in MPS II. Enzyme replacement therapy (ERT) with idursulfase (Elaprase(R)) or idursulfase beta (Hunterase(R)) have been developed for these patients. The effect of ERT on the growth of Korean patients with Hunter syndrome was evaluated at a single center. This study comprised 32 patients, who had received ERT for at least 2 yr; they were divided into three groups according to their ages at the start of ERT: group 1 (<6 yr, n=14), group 2 (6-10 yr, n=11), and group 3 (10-20 yr, n=7). The patients showed marked growth retardation as they got older. ERT may have less effect on the growth of patients with the severe form of Hunter syndrome. The height z-scores in groups 2 and 3 revealed a significant change (the estimated slopes before and after the treatment were -0.047 and -0.007, respectively: difference in the slope, 0.04; P<0.001). Growth in response to ERT could be an important treatment outcome or an endpoint for future studies.


Subject(s)
Adolescent , Child , Child, Preschool , Humans , Infant , Male , Young Adult , Body Height , Demography , Enzyme Replacement Therapy , Iduronate Sulfatase/therapeutic use , Cognitive Dysfunction/etiology , Mucopolysaccharidosis II/complications , Mutation , Phenotype , Protein Isoforms/therapeutic use , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL