Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 119-127, 2020.
Article in Chinese | WPRIM | ID: wpr-873258

ABSTRACT

Objective::To explore the effect of strong light stress on the growth, physiological and biochemical and key enzyme gene expression of the Atractylodes lancea, in order to provide the scientific basis for the standardized cultivation of the A. lancea. Method::The two-year-old A. lancea seedlings were taken as experimental materials. Poplar forest (light transmittance between 18.26%-36.04%) was taken as control group(ck). Different density shading networks were used to simulate different degrees of high light stress (51.10%, 80.73%, 100%) in late July. The growth state of A. lancea was observed. On the 0th, 5th, 10th, 15th, 20th days, the physiological and biochemical indexes of malondialdehyde (MDA) content, cell membrane permeability, proline (Pro) content, antioxidant enzyme activity and chlorophyll content in the leaves of A. lancea were measured. The relative expression levels of 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase (3-hydroxy-3-methylglutaryl coenzyme A, HMGR) and farnesyl pyrophosphate synthase gene (farnesyl pyrophosphate synthase, FPPS) in leaves of A. lancea under intense light stress were determined by real-time fluorescence quantitative PCR(Real-time PCR). Result::After strong light stress, the color of the leaves of A. lancea changed from dark green to light green and yellowish green, and the burn of leaves became more and more serious. The contents of MDA, conductivity and Pro showed an upward trend with the increase of transmittance. Peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) tended to increase first and then decrease. The chlorophyll content decreased with the increase of light transmittance. The relative expression of HMGR in leaves of A. lancea decreased with the increase of light transmittance, while FPPS increased first and then decreased. Conclusion::The results showed that A. lanceaa could alleviate the inhibition of strong light stress by increasing the activity of antioxidant enzymes and regulating the content of osmotic pressure under certain strong light stress. Excessively strong intensity light stress leads to disequilibrium of metabolic mechanism of A. lancea, and seriously inhibits the plant growth.

2.
Journal of Zhejiang University. Medical sciences ; (6): 67-73, 2015.
Article in Chinese | WPRIM | ID: wpr-255232

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of inhibiting gap junctional intercellular communication on hypoxia/reoxygenation injury in astrocytes.</p><p><b>METHODS</b>Primary cultured cerebral cortical astrocytes of neonate rats were divided into normal control group, hypoxia reoxygenation injury group and 18-α-glycyrrhetinic acid and oleamide (gap junctional intercellular channel inhibitors) group. The gap junction intercellular communication was determined by Parachute assay. The viability of astrocyes was detected by MTT assay. The apoptosis of astrocytes were detected with annexin V/PI and Hoechst 33258 staining.</p><p><b>RESULTS</b>Compared with the normal control group, the gap junctional function of astrocytes was increased significantly in ischemia/reperfusion group (P<0.01), the surviving fraction of astrocytes decreased significantly (P<0.01) and its cell apoptosis ratio increased significantly (P<0.01). Compared with the ischemia/reperfusion group, the gap junctional function of astrocytes in18-α-glycyrrhetinic acid and oleamide group decreased significantly (P<0.01), the viability of astrocytes increased significantly (P<0.01), while cell apoptosis decreased significantly (P<0.01).</p><p><b>CONCLUSION</b>Inhibition of intercellular gap junction has protective effect against hypoxia/reoxygenation injury in astrocytes.</p>


Subject(s)
Animals , Rats , Apoptosis , Astrocytes , Cell Biology , Pathology , Cell Communication , Cell Hypoxia , Cells, Cultured , Gap Junctions , Oxygen
3.
National Journal of Andrology ; (12): 400-404, 2014.
Article in Chinese | WPRIM | ID: wpr-309700

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of total flavonoids of Litsea Coreana (TFLC) on the gap junction (GJ) intercellular communication in TM3 testicular Leydig cells and whether TFLC can reduce the cytotoxicity of oxaliplatin (OHP) in vitro.</p><p><b>METHODS</b>We detected the effect of TFLC on the dye spread of the in vitro cultured TM3 cells by parachute assay, observed changes in the expression of connexin 43 (Cx43) total protein in the TFLC-treated TM3 cells by Western blot, and determined the effects of TFLC on the expression of Cx43 on the membrane of the TM3 cells by immunofluorescence assay and on the cytotoxicity of OHP by MTT assay.</p><p><b>RESULTS</b>TFLC obviously enhanced the GJ function with the increasing of the TFLC concentration in the TM3 cells. Western blot and immunofluorescence assay confirmed that TFLC significantly enhanced the expression of Cx43 total protein and Cx43 expression on the membrane of the TM3 cells. MTT assay showed that at a high cell density (confluent with GJ formation), 20 microg/ml TFLC enhanced the GJ function of the TM3 cells and reduced the cytotoxicity of OHP (P < 0.05), while at a low density (preconfluent with no GJ formation), TFLC exhibited no effect on the cytotoxicity of OHP (P > 0.05).</p><p><b>CONCLUSION</b>TFLC increases the Cx43 expression and GJ function in normal TM3 Leydig cells, and the enhancement of GJ function reduces the cytotoxicity of OHP.</p>


Subject(s)
Humans , Male , Antineoplastic Agents , Toxicity , Cell Communication , Physiology , Cell Count , Connexin 43 , Metabolism , Flavonoids , Pharmacology , Gap Junctions , In Vitro Techniques , Leydig Cells , Litsea , Chemistry , Organoplatinum Compounds , Toxicity , Proteins , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL