Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Hepatology ; (12): 594-600, 2023.
Article in Chinese | WPRIM | ID: wpr-986176

ABSTRACT

Objective: To investigate the role of Maresin1 (MaR1) in hepatic ischemia-reperfusion injury (HIRI). Methods: The HIRI model was established and randomly divided into a sham operation group (Sham group), an ischemia-reperfusion group (IR group), and a MaR1 ischemia-reperfusion group (MaR1+IR group). MaR1 80ng was intravenously injected into each mouse's tail veins 0.5h before anesthesia. The left and middle hepatic lobe arteries and portal veins were opened and clamped. The blood supply was restored after 1h of ischemia. After 6h of reperfusion, the mice were sacrificed to collect blood and liver tissue samples. The Sham's group abdominal wall was only opened and closed. RAW267.4 macrophages were administered with MaR1 50ng/ml 0.5h before hypoxia, followed by hypoxia for 8h and reoxygenation for 2h, and were divided into the control group, the hypoxia-reoxygenation group (HR group), the MaR1 hypoxia-reoxygenation group (MaR1 + HR group), the Z-DEVD-FMK hypoxia-reoxygenation group (HR+Z group), the MaR1 + Z-DEVD-FMK hypoxia-reoxygenation group (MaR1 + HR + Z group), and the Con group without any treatment. Cells and the supernatant above them were collected. One-way analysis of variance was used for inter-group comparisons, and the LSD-t test was used for pairwise comparisons. Results: Compared with the Sham group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, and IL-18 in the IR group were significantly higher (P < 0.05), with remarkable pathological changes, while the level in the MaR1 + IR group was lower than before (P < 0.05), and the pathological changes were alleviated. Compared with the Con group, the HR group had higher levels of IL-1β and IL-18 (P < 0.05), while the MaR1 + HR group had lower levels of IL-1β and IL-18 (P < 0.05). Western blot showed that the expressions of caspase-3, GSDME, and GSDME-N were significantly higher in the HR group and IR group than in the other groups; however, the expression was lower following MaR1 pretreatment. The Z-DEVD-FMK exploration mechanism was inhibited by the expression of caspase-3 in HIRI when using MaR1. Compared with the HR group, the IL-1β and IL-18 levels and the expressions of caspase-3, GSDME, and GSDME-N in the HR + Z group were decreased (P < 0.05), while the expression of nuclear factor κB was increased, but following MaR1 pretreatment, nuclear factor κB was decreased. There was no significant difference in the results between the MaR1 + H/R group and the MaR1 + H/R + Z group (P > 0.05). Conclusion: MaR1 alleviates HIRI by inhibiting NF-κB activation and caspase-3/GSDME-mediated inflammatory responses.


Subject(s)
Mice , Animals , NF-kappa B/metabolism , Interleukin-18/metabolism , Caspase 3/metabolism , Liver/pathology , Signal Transduction , Reperfusion Injury/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL