Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 1064-1068, 2015.
Article in Chinese | WPRIM | ID: wpr-479111

ABSTRACT

Objective To observe the brain glucose metabolism after limb ischemic preconditioning (LIPC) for ischemic moyamoya dis-ease with positron emission tomography (PET) and statistical parametric mapping (SPM). Methods 62 patients with ischemic moyamoya disease were enrolled and randomized into LIPC group (n=31) and control group (n=31). The glucose metabolism of patients was analyzed with PET before and after treatment in both groups, using the methods of radioactivity ratio and SPM. Results The glucose metabolism ratio improved more in the LIPC group than in the control group (P<0.01), and aggravated less than in the control group (P<0.001). As setting the glucose metabolism increased after treatment, there were 7 areas activated in LIPC group, including frontal, temporal and parietal lobes, and the KE=1121;while there were 5 areas activated in the control group, including frontal and parietal lobes, and the KE=292. As setting the glu-cose metabolism decreased after treatment, there was only frontal area activated in LIPC group, while there were 8 areas activated in the con-trol group, including frontal, parietal, occipital lobes, and the KE=629. Conclusion LIPC may improve the brain glucose metabolism in pa-tients with moyamoya disease, which can be observed with PET and SPM.

2.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 1064-1068, 2015.
Article in Chinese | WPRIM | ID: wpr-941607

ABSTRACT

@#Objective To observe the brain glucose metabolism after limb ischemic preconditioning (LIPC) for ischemic moyamoya disease with positron emission tomography (PET) and statistical parametric mapping (SPM). Methods 62 patients with ischemic moyamoya disease were enrolled and randomized into LIPC group (n=31) and control group (n=31). The glucose metabolism of patients was analyzed with PET before and after treatment in both groups, using the methods of radioactivity ratio and SPM. Results The glucose metabolism ratio improved more in the LIPC group than in the control group (P<0.01), and aggravated less than in the control group (P<0.001). As setting the glucose metabolism increased after treatment, there were 7 areas activated in LIPC group, including frontal, temporal and parietal lobes, and the KE=1121; while there were 5 areas activated in the control group, including frontal and parietal lobes, and the KE=292. As setting the glucose metabolism decreased after treatment, there was only frontal area activated in LIPC group, while there were 8 areas activated in the control group, including frontal, parietal, occipital lobes, and the KE=629. Conclusion LIPC may improve the brain glucose metabolism in patients with moyamoya disease, which can be observed with PET and SPM.

3.
Chinese Journal of Neurology ; (12)2001.
Article in Chinese | WPRIM | ID: wpr-536997

ABSTRACT

Objective Primary progressive aphasia (PPA) is a rare neurodegenerative disease barely reported in China. Methods Complete neuropsychological testing on memory, cognitive function and aphasia was carried out. The brain function and structure was also examined with MRI and PET imaging analysis. Results The characteristics of clinical manifestation, neuropsychological testing and brain imaging analysis were reported. Except anomic aphasia, no other abnormal neuropsychological testing as well as sign of the nervous system was found. However, a significant atrophy and decrease in glucose metabolism of the left temporal lobe was observed.Conclusion PPA is clinically characterized by progressive anomic aphasia without impairment of the cognitive function and other abnormal sign of central nervous system. Atrophy of the frontal and temporal lobe in the dominant hemisphere provides strong support for the diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL