Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-220410

ABSTRACT

Cervical cancer (CC) is acknowledged as the most ubiquitous carcinoma among females along with the utmost prevalence in developing nations. The major cause of CC is HPV exposure, especially HPV16 and 18. Inflammation is linked to the carcinogenesis of CC in addition to HPV infection. Although the precise cause of CC is yet unknown, using oral contraceptives, being immunosuppressed, and smoking may enhance the risk of the disease. Oxidative stress (OS), in addition to HPV, is linked to cervical cancer. Across several clinical and preclinical research, the dysfunctional redox system and the impact of oxidative stress throughout the aetiology of CC have been examined. Redox homeostasis must therefore be maintained, which calls for both enzymatic and nonenzymatic redox regulators. In this study, we explored the therapeutic strategies used to preserve redox balance, lower cervical cancer mortality, and illustrate the contribution of oxidative stress in the aetiology of the disease

2.
Article | IMSEAR | ID: sea-195868

ABSTRACT

Background & objectives: In contrast to Caucasians of European origin, the aetiology of diabetes mellitus (DM) in young adults in other ethnic groups, including Indians is likely to be heterogeneous and difficult to determine. This study was undertaken to determine the aetiology of diabetes in young Indian adults using a protocol-based set of simple clinical and investigation tools. Methods: In this prospective study, 105 Indian young adults with diabetes (age at onset 18-35 yr; duration <2 yr) were studied for a period of 1-3 years. Pancreatic imaging, fasting C-peptide, islet antibodies (against glutamic acid decarboxylase, tyrosine phosphatase and zinc transporter-8) and mitochondrial A3243G mutational analysis were performed in all patients. Four patients were screened for maturity-onset diabetes of the young (MODY) using next-generation sequencing. Results: Type 1 and type 2 diabetes mellitus (T1DM and T2DM) were equally frequent (40% each), followed by fibrocalculous pancreatic diabetes (FCPD, 15%). Less common aetiologies included MODY (2%), mitochondrial diabetes (1%) and Flatbush diabetes (2%). There was considerable phenotypic overlap between the main aetiological subtypes. Elevated islet antibodies were noted in 62 per cent of T1DM patients [positive predictive value (PPV) 84%; negative predictive value (NPV) 78%] while low plasma C-peptide (<250 pmol/l) was present in 56 per cent of T1DM patients [PPV 96% (after excluding FCPD), NPV 72%]. Using these tests and observing the clinical course over one year, a final diagnosis was made in 103 (99%) patients, while the diagnosis at recruitment changed in 23 per cent of patients. Interpretation & conclusions: The aetiology of diabetes in young adults was heterogeneous, with T1DM and T2DM being equally common. FCPD was also frequent, warranting its screening in Indian patients. Testing for islet antibodies and C-peptide in this age group had good PPV for diagnosis of T1DM.

3.
Indian J Exp Biol ; 2003 Aug; 41(8): 846-9
Article in English | IMSEAR | ID: sea-63021

ABSTRACT

The present study critically evaluates the effects of hypothyroid and hyperthyroid states on lipid peroxidation and two enzymes of active oxygen metabolism, namely superoxide dismutase (SOD) and catalase (CAT) in the rat heart mitochondrial and post-mitochondrial fractions. Lipid peroxidation, an index of oxidative stress, was elevated in the heart tissue in hypothyroid state but reduced upon T3 supplementation. Hyperthyroidism registered increased SOD activity in post-mitochondrial fraction. Mitochondrial SOD activity was reduced in hypothyroid state, which was further reduced by T3 administration. In contrast, different thyroid states had no effect on catalase activity in the mitochondrial fraction. The hypothyroid state however, significantly augmented catalase activity in post-mitochondrial fraction. The results suggest that the antioxidant defence status of cardiac tissue is well modulated by thyroid hormone.


Subject(s)
Animals , Catalase/metabolism , Disease Models, Animal , Hyperthyroidism/blood , Hypothyroidism/blood , Lipid Peroxidation , Male , Mitochondria, Heart/enzymology , Myocardium/enzymology , Organ Size/physiology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thyroxine/blood , Triiodothyronine/administration & dosage , Uracil/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL