Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
BAG, J. basic appl. genet. (Online) ; 34(1): 47-56, July 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447499

ABSTRACT

ABSTRACT One of the greatest challenges facing humanity is the development of sustainable strategies to ensure food availability in response to population growth and climate change. One approach that can contribute to increase food security is to close yield gaps and enhancing genetic gain; to such end, what is known as "molecular breeding" plays a fundamental role. Since a crop breeding program is mainly based on the quality of the germplasm, its detailed genetic characterization is mandatory to ensure the efficient use of genetic resources and accelerating development of superior varieties. Deep genotyping is an essential tool for a comprehensive characterization of the germplasm of interest and, fortunately, the technology is now accessible at a reasonable cost. What must be ensured is the correct interpretation of the genotypic information and on that basis develop efficient practical molecular crop breeding strategies that respond to the real needs of the breeding program.


RESUMEN Uno de los mayores desafíos que enfrenta la humanidad es el desarrollo de estrategias sostenibles para asegurar la disponibilidad de alimentos en respuesta al crecimiento de la población y el cambio climático. Un enfoque que puede contribuir a aumentar la seguridad alimentaria es cerrar las brechas de rendimiento y mejorar la ganancia genética; para tal fin, lo que se conoce como "mejoramiento molecular" juega un papel fundamental. Dado que un programa de mejoramiento de cultivos se basa principalmente en la calidad del germoplasma, su caracterización genética detallada es fundamental para garantizar el uso eficiente de los recursos genéticos y acelerar el desarrollo de variedades superiores. La genotipificación profunda es una herramienta esencial para una caracterización integral del germoplasma de interés y, afortunadamente, en la actualidad se puede acceder a la tecnología a un costo razonable. Lo que debe asegurarse es la interpretación correcta de la información genotípica y sobre esa base desarrollar estrategias eficientes y prácticas de mejoramiento molecular de cultivos que respondan a las necesidades reales del programa de mejoramiento.

2.
BAG, J. basic appl. genet. (Online) ; 30(1): 11-15, June 2019. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1089059

ABSTRACT

Even when conventional breeding was effective in achieving a continuous improvement in yield, Molecular Genetics tools applied in plant breeding contributed to maximize genetic gain. Thus, the use of DNA technology applied in agronomic improvement gave rise to Molecular Breeding, discipline which groups the different breeding strategies where genotypic selection, based on DNA markers, are used in combination with or in replacement of phenotypic selection. These strategies can be listed as: marker-assisted selection; marker-assisted backcrossing; marker assisted recurrent selection; and genomic selection. Strong arguments have been made about the potential advantages that Molecular Breeding brings, although little has been devoted to discussing its feasibility in practical applications. The consequence of the lack of a deep analysis when implementing a strategy of Molecular Breeding is its failure, leading to many undesirable outcomes and discouraging breeders from using the technology. The aim of this work is to trigger a debate about the convenience of the use of Molecular Breeding strategies in a breeding program considering the DNA technology of choice, the complexity of the trait of agronomic interest to be improved, the expected accuracy in the selection, and the demanded resources.


El mejoramiento convencional ha sido efectivo para lograr una mejora continua en el rendimiento; sin embargo las herramientas de Genética Molecular aplicadas en el fitomejoramiento han contribuido a maximizar la ganancia genética. Es así que el uso de la tecnología de ADN aplicada en la mejora agronómica dio lugar al Mejoramiento Molecular, disciplina que agrupa las diferentes estrategias en las que la selección genotípica, basada en marcadores de ADN, es utilizada en combinación con, o bien en reemplazo de, la selección fenotípica. Estas estrategias se pueden clasificar como: selección asistida por marcadores; retrocruzamiento asistido por marcadores; selección recurrente asistida por marcadores; y selección genómica. Se han presentado fuertes argumentos sobre las potenciales ventajas que aporta el mejoramiento molecular, aunque poco se ha dedicado a discutir la viabilidad de su aplicación práctica. La consecuencia de la falta de un análisis profundo al implementar una estrategia de este tipo puede ser su fracaso, lo que puede derivar en resultados indeseables, desalentando a los fitomejoradores a usar la tecnología. El objetivo de este trabajo es propiciar un debate sobre la conveniencia del uso práctico de estrategias de mejoramiento molecular teniendo en cuenta la tecnología de ADN elegida, la complejidad del rasgo de interés agronómico que se quiere mejorar, la precisión esperada en la selección y los recursos demandados.

SELECTION OF CITATIONS
SEARCH DETAIL