Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 76-83, 2023.
Article in Chinese | WPRIM | ID: wpr-962627

ABSTRACT

ObjectiveTo investigate the effect and mechanism of pachymic acid (PA) in Poria on the invasion and metastasis of renal carcinoma cells. MethodThe effect of PA (0, 20, 40, 80, 160 μmol·L-1) on cell viability was detected by cell counting kit-8(CCK-8), and the dose of PA was selected for subsequent experiments. The effect of PA (0, 20, 40, 80 μmol·L-1) on cell proliferation was evaluated by colony formation assay. The effect of PA (0, 20, 40, 80 μmol·L-1) on cell adhesion ability was observed by cell adhesion assay. The effect of PA (0, 20, 40, and 80 μmol·L-1) on cell invasion and metastasis was investigated by Wound healing assay and Transwell invasion assay. The inhibitory effect of PA (0, 20, 40, 80 μmol·L-1) on cell motility was further observed and verified by high-content imaging technology. The effects of PA (0, 20, 40, 80 μmol·L-1) on the expression of matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinasas (TIMP) related to invasion and metastasis and Smads were detected by Western blot. ResultCCK-8 results showed that compared with the blank group, the PA groups showed decreased cell viability(P<0.01), with the half-maximal inhibitory concentration (IC50) of ACHN cells of 70.42 μmol·L-1 at 24 h. Colony formation assay showed that the number of cell clonal groups in the PA groups was reduced compared with that in the blank group(P<0.01). Cell adhesion assay showed that compared with the blank group, the PA groups displayed reduced cell adhesion(P<0.01). Wound healing assay showed that the wound healing rate of cells in the PA groups was lower than that in the blank group (P<0.05,P<0.01). Transwell invasion assay showed that compared with the blank group, the number of transmembrane cells in PA groups was reduced(P<0.01). High-content imaging showed that the cumulative migration distance of cells in the PA groups was shorter than that in the blank group(P<0.01). The results of Western blot showed that the protein expression of MMP-2 and MMP-9 in the PA groups decreased (P<0.01), and TIMP-1 protein expression increased (P<0.01) compared with those in the blank group. In addition, compared with the blank group, the PA groups showed decreased protein expression of Smad2 and Smad3 (P<0.01). ConclusionPA can inhibit the invasion and metastasis of renal carcinoma cells presumably through regulating the homeostasis of MMP/TIMP by Smad2/3.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 46-53, 2022.
Article in Chinese | WPRIM | ID: wpr-940206

ABSTRACT

ObjectiveTo study the inhibitory effect of Celastrus orbiculatus extract (COE) on gastric cancer cells, to clarify the specific mechanism of COE promoting the apoptosis of gastric cancer cells by affecting the mitochondrial structure and function, and to provide an experimental basis for the further development and clinical application of C. orbiculatus. MethodBrdu staining combined with flow cytometry and Annexin V-fluorescein isothiocyanate (AnnexinV-FITC) staining combined with flow cytometry were employed to detect the effects of COE (20, 40, 80 mg·L-1) on the proliferation and apoptosis of gastric cancer cells, respectively. The changes in mitochondrial membrane potential were detected with JC-1 mitochondrial membrane potential assay kit. The expression of apoptosis-associated proteins including B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-xL (Bcl-xL), Bcl-2-associated X (Bax), and cysteine aspartutespecific protease-3 (Caspase-3) in gastric cancer cells was determined by Western blot. Transmission electron microscopy was employed to detect changes in the mitochondrial microstructure of gastric cancer cells exposed to COE. Western blot was employed to measure the expression of mitochondrial marker proteins [superoxide dismutase 1 (SOD1), voltage-dependent anion channel (VDAC), prohibitin 1 (PHB1), and heat shock protein 60 (HSP60)] in gastric cancer cells. ResultCompared with the control group, COE (40, 80 mg·L-1) inhibited the proliferation and promoted the apoptosis of gastric cancer cells (P<0.05). Furthermore, COE reduced the mitochondrial membrane potential of gastric cancer cells. Compared with the control group, COE (20, 40, 80 mg·L-1) up-regulated the expression of Bax and Caspase-3 which promoted apoptosis of gastric cells (P<0.05, P<0.01), and COE at 40 and 80 mg·L-1 down-regulated the expression of Bcl-2 and Bcl-xL which inhibited the apoptosis of gastric cancer cells (P<0.01). The results of transmission electron microscopy showed that COE changed the microstructure of gastric cancer cells, which led to the appearance of vacuoles in the cell membrane and mitochondria and damaged the mitochondrial structure. Compared with the control group, COE (20, 40, 80 mg·L-1) changed the expression of mitochondrial marker proteins. Specifically, it up-regulated the expression of SOD1 involved in stress response (P<0.05, P<0.01) and down-regulated that of VDAC, PHB1, and HSP60 associated with mitochondrial stability and permeability (P<0.01). ConclusionCOE can significantly inhibit the proliferation and promote the apoptosis of gastric cancer cells. It may activate the mitochondrial apoptosis pathway by destroying the mitochondrial structure and function of gastric cancer cells.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 46-53, 2022.
Article in Chinese | WPRIM | ID: wpr-940109

ABSTRACT

ObjectiveTo study the inhibitory effect of Celastrus orbiculatus extract (COE) on gastric cancer cells, to clarify the specific mechanism of COE promoting the apoptosis of gastric cancer cells by affecting the mitochondrial structure and function, and to provide an experimental basis for the further development and clinical application of C. orbiculatus. MethodBrdu staining combined with flow cytometry and Annexin V-fluorescein isothiocyanate (AnnexinV-FITC) staining combined with flow cytometry were employed to detect the effects of COE (20, 40, 80 mg·L-1) on the proliferation and apoptosis of gastric cancer cells, respectively. The changes in mitochondrial membrane potential were detected with JC-1 mitochondrial membrane potential assay kit. The expression of apoptosis-associated proteins including B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-xL (Bcl-xL), Bcl-2-associated X (Bax), and cysteine aspartutespecific protease-3 (Caspase-3) in gastric cancer cells was determined by Western blot. Transmission electron microscopy was employed to detect changes in the mitochondrial microstructure of gastric cancer cells exposed to COE. Western blot was employed to measure the expression of mitochondrial marker proteins [superoxide dismutase 1 (SOD1), voltage-dependent anion channel (VDAC), prohibitin 1 (PHB1), and heat shock protein 60 (HSP60)] in gastric cancer cells. ResultCompared with the control group, COE (40, 80 mg·L-1) inhibited the proliferation and promoted the apoptosis of gastric cancer cells (P<0.05). Furthermore, COE reduced the mitochondrial membrane potential of gastric cancer cells. Compared with the control group, COE (20, 40, 80 mg·L-1) up-regulated the expression of Bax and Caspase-3 which promoted apoptosis of gastric cells (P<0.05, P<0.01), and COE at 40 and 80 mg·L-1 down-regulated the expression of Bcl-2 and Bcl-xL which inhibited the apoptosis of gastric cancer cells (P<0.01). The results of transmission electron microscopy showed that COE changed the microstructure of gastric cancer cells, which led to the appearance of vacuoles in the cell membrane and mitochondria and damaged the mitochondrial structure. Compared with the control group, COE (20, 40, 80 mg·L-1) changed the expression of mitochondrial marker proteins. Specifically, it up-regulated the expression of SOD1 involved in stress response (P<0.05, P<0.01) and down-regulated that of VDAC, PHB1, and HSP60 associated with mitochondrial stability and permeability (P<0.01). ConclusionCOE can significantly inhibit the proliferation and promote the apoptosis of gastric cancer cells. It may activate the mitochondrial apoptosis pathway by destroying the mitochondrial structure and function of gastric cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL