Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Medical Journal ; (24): 1916-1922, 2003.
Article in English | WPRIM | ID: wpr-235852

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the insulin-like growth factor-I (IGF-I) gene and polypeptide expression in cultured rat osteoblast (ROB) and the role of IGF-I in mediating the cell-to-cell communication by mimicking the pharmacokinetics of parathyroid hormone (PTH).</p><p><b>METHODS</b>The ROB was cultured with three kinds of treatment: (1) Control (Ctr), the cells were cultured without PTH during the first 6 hours and the subsequent 42 hours in a 48-hour cycle; (2) Intermittent exposure to PTH (Itm), the cells were cultured with PTH during the first 6 hours, but without PTH in the subsequent 42 hours; and (3) Continuous exposure to PTH (Ctu), the cells were cultured with PTH during the first 6 hours and the subsequent 42 hours.</p><p><b>RESULTS</b>The bone-forming activities of ROB were increased in Itm and inhibited in Ctu. The IGF-I mRNA content in Itm cells was elevated only during the first 6 hours and that in Ctu cells was elevated at any time during an incubation cycle. The free IGF-I concentration in the medium of Itm cells was generally higher and that of the Ctu cells was generally lower compared with those of the Ctr cells. The IGF-I antibody significantly reduced the alkaline phosphatase activity within the cells of Ctr and Itm.</p><p><b>CONCLUSIONS</b>PTH rapidly and constantly stimulates the IGF-I gene transcription of osteoblast. There was an obvious discrepancy between the IGF-I mRNA content within the osteoblast and the free IGF-I level around the osteoblast in either mode of PTH action. The IGF-I might be important for osteoblast-osteoblast communication and bone-forming activity, not only in intermittent PTH administration, but also in the physiological functioning of osteoblasts.</p>


Subject(s)
Animals , Rats , Cells, Cultured , Gene Expression , Insulin-Like Growth Factor I , Genetics , Physiology , Osteoblasts , Parathyroid Hormone , Pharmacology , Peptides , Genetics , RNA, Messenger , Rats, Sprague-Dawley , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL