Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of Forensic Medicine ; (6): 457-464, 2023.
Article in English | WPRIM | ID: wpr-1009378

ABSTRACT

OBJECTIVES@#To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.@*METHODS@#The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.@*RESULTS@#The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.@*CONCLUSIONS@#The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Electronic Nicotine Delivery Systems , Illicit Drugs/analysis , Indazoles/chemistry , Glycerol/analysis , Cannabinoids , Indoles/chemistry , Ions
2.
Journal of Forensic Medicine ; (6): 726-732, 2022.
Article in English | WPRIM | ID: wpr-984164

ABSTRACT

OBJECTIVES@#To analyze the chemical structure of the interfering substance that affects the result of methamphetamine analysis in wastewater.@*METHODS@#A combination of GC-MS and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was used to analyze the mass spectrum characteristics of the interfering substance that affects the result of methamphetamine analysis and to infer its possible structure. Liquid chromatography-triple quadrupole-mass spectrometry (LC-TQ-MS) was used to confirm the control material.@*RESULTS@#Using LC-QTOF-MS in positive electrospray ionization (ESI+) mode, the mass-to-charge ratio (m/z) of quasi-molecular ion in the MS1 mass spectrometry of interfering substance was identical to that of methamphetamine, indicating that the interfering substance was probably an isomer of methamphetamine. The MS2 mass spectra obtained at three collision energies of 15 V, 30 V and 45 V were highly similar to methamphetamine, suggesting that the interfering substance contained methylamino and benzyl groups. Further analysis using GC-MS in electron impact (EI) ionization mode showed that the base peak in the mass spectrum of the interfering substance was at m/z 44. The interfering substance was confirmed to be N-methyl-2-phenylpropan-1-amine by compared with the standard reference.@*CONCLUSIONS@#The chemical structure of N-methyl-2-phenylpropan-1-amine is highly similar to methamphetamine, which is easy to cause interference for the detection of trace amounts of methamphetamine in wastewater using LC-TQ-MS. Therefore, in the actual analysis, the chromatographic retention time can be used to distinguish between N-methyl-2-phenylpropan-1-amine and methamphetamine.


Subject(s)
Methamphetamine , Wastewater , Amines , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods
3.
Journal of Forensic Medicine ; (6): 500-504, 2021.
Article in Chinese | WPRIM | ID: wpr-985239

ABSTRACT

Objective To establish an ion chromatography method for the salt form determination of new psychoactive substances (NPS). Methods The method of conducting qualitative and quantitative analysis of six types of organic acid ions (acetate ion, tartrate ion, maleate ion, oxalate ion, fumarate ion, citrate ion) and five types of inorganic anions (fluoride ion, chloride ion, nitrate ion, sulfate ion, phosphate ion) in NPS sample by ion chromatography was developed. The salt forms of 222 seized NPS samples (103 samples with synthetic cannabinoids, 81 samples with cathinones, 44 samples with phenylethylamines, 12 samples with tryptamines, 7 samples with phencyclidines, 6 samples with piperazines, 2 samples with aminoindenes, 26 samples with fentanyls and 43 samples with other types of NPS) were analyzed by this method. Results Each anion had good linearity in the corresponding linear range, the correlation coefficients (r) were greater than 0.999, the limits of detection were 0.01-0.05 mg/L, and the limits of quantitative were 0.1-0.5 mg/L. Except that 5F-BEPIRAPIM was hydrochloride, the salt forms of the other 102 synthetic cannabinoids were all base. The salt form of 81 cathinone samples, 44 phenylethylamine samples, 7 phencyclidine samples and 2 aminoindene samples were all hydrochloride. The salt forms of tryptamine samples included base, hydrochloride, fumarate and oxalate. The salt forms of piperazine samples included base and hydrochloride. The salt forms of fentanyl samples and samples of other types included base, hydrochloride and citrate. Conclusion Ion chromatography is a simple, accurate and efficient method for determining the salt form of NPS samples, which makes the qualitative and quantitative conclusions of NPS more scientific and rigorous.


Subject(s)
Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Ions , Psychotropic Drugs/chemistry
4.
Journal of Forensic Medicine ; (6): 486-492, 2021.
Article in Chinese | WPRIM | ID: wpr-985237

ABSTRACT

Objective To study the qualitative analysis strategy for unknown synthetic cannabinoid in the suspicious herbal product when no reference substance is available. Methods The synthetic cannabinoid in herbal blend was extracted with methanol. The extract was concentrated by rotary evaporator and separated and purified by preparative liquid chromatography, to obtain high purity synthetic cannabinoid sample. Gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and nuclear magnetic resonance (NMR) were used to determine the structure of the prepared compound. Results High purity unknown sample (10 mg) was obtained by preparative liquid chromatography. The sample was analyzed by GC-MS, UPLC-TOF-MS and NMR, and through spectrum analysis, the unknown synthetic cannabinoid was determined as 5F-EDMB-PICA. Conclusion The method to extract unknown synthetic cannabinoid from low content herbal products by preparative liquid chromatography was established, and the structure of the unknown sample was identified by comprehensive use of GC-MS, UPLC-QTOF-MS and NMR. The information will assist forensic laboratories in identifying this substance or other compounds with similar structures in their casework.


Subject(s)
Cannabinoids , Chromatography, High Pressure Liquid , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Mass Spectrometry
5.
Journal of Forensic Medicine ; (6): 33-37, 2021.
Article in English | WPRIM | ID: wpr-985190

ABSTRACT

Objective To establish an infrared spectroscopic method for the rapid qualitative and quantitative analysis of caffeine and sodium benzoate in Annaka samples. Methods Qualitative and quantitative modeling samples were prepared by mixing high-purity caffeine and sodium benzoate. The characteristic absorption peaks of caffeine and sodium benzoate in Annaka samples were determined by analyzing the infrared spectra of the mixed samples. The quantitative model of infrared spectra was established by partial least squares (PLS). Results By analyzing the infrared spectra of 17 mixed samples of caffeine and sodium benzoate (the purity of caffeine ranges from 10% to 80%), the characteristic absorption peaks for caffeine were determined to be 1 698, 1 650, 1 237, 972, 743, and 609 cm-1. The characteristic absorption peaks for sodium benzoate were 1 596, 1 548, 1 406, 845, 708 and 679 cm-1. When the detection of all characteristic absorption peaks was the positive identification criteria, the positive detection rate of caffeine and sodium benzoate in 48 seized Annaka samples was 100%. The linear range of PLS quantitative model for caffeine was 10%-80%, the coefficient of determination ( R2) was 99.9%, the root mean square error of cross validation (RMSECV) was 0.68%, and the root mean square error of prediction (RMSEP) was 0.91%; the linear range of PLS quantitative model for sodium benzoate was 20%-90%, the R2 was 99.9%, the RMSECV was 0.91% and the RMSEP was 1.11%. The results of paired sample t test showed that the differences between the results of high performance liquid chromatography method and infrared spectroscopy method had no statistical significance. The established infrared quantitative method was used to analyze 48 seized Annaka samples, the purity of caffeine was 27.6%-63.1%, and that of sodium benzoate was 36.9%-72.3%. Conclusion The rapid qualitative and quantitative analysis of caffeine and sodium benzoate in Annaka samples by infrared spectroscopy method could improve identification efficiency and reduce determination cost.


Subject(s)
Caffeine , Chromatography, High Pressure Liquid , Least-Squares Analysis , Sodium Benzoate , Spectroscopy, Near-Infrared
6.
Journal of Forensic Medicine ; (6): 677-681, 2020.
Article in Chinese | WPRIM | ID: wpr-985165

ABSTRACT

Objective To study the identification method for 4'-F-4-methylaminorex (4'-F-4-MAR) in samples without reference substance. Methods Gas chromatography-mass spectrometry (GC-MS), ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS), nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) were comprehensively used for the structure identification of 4'-F-4-MAR in samples. Results Under the positive electrospray ionization (ESI+) mode, quasi-molecular ion in the first order mass spectrometry of the unknown compound was 195.092 6 and its molecular formula was inferred to be C10H11FN2O. The fragment ions in the mass spectrometry of the unknown compound were compared with the related fragment ions of 4,4'-dimethylaminorex (4,4'-DMAR) in literature. It was found that the main fragment ions of the unknown compound were all 4 bigger than the corresponding fragment ions of 4,4'-DMAR. Therefore, the unknown compound was inferred to be a 4,4'-DMAR analogue with a methyl substituted by a fluorine in the benzene ring. The equivalent protons at δ=7.30 and δ=7.06 in 1H-nuclear magnetic resonance (1H-NMR) spectra and the characteristic spin-spin coupling constants (1JC-F=245.2 Hz, 2JC-F=21.3 Hz, 3JC-F=8.1 Hz) for 13C-19F interactions in carbon spectra, further proved that the fluorine substituted methyl at the para-position of the benzene ring. Finally, the unknown compound was determined as 4'-F-4-MAR. Conclusion A method that comprehensively used the identification materials 4'-F-4-MAR in GC-MS, UPLC-QTOF-MS, NMR and FTIR is established and the fragmentation mechanism of fragmentation ions of 4'-F-4-MAR created under the two modes -- electron impact (EI) and electrospray ionization under collision induced dissociation (ESI-CID) is deduced. The information will assist forensic science laboratories in identifying this compound or other substances with similar structure in their case work.


Subject(s)
Aminorex , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Nitroimidazoles , Spectrometry, Mass, Electrospray Ionization
7.
Journal of Forensic Medicine ; (6): 216-223, 2019.
Article in English | WPRIM | ID: wpr-985001

ABSTRACT

Objective To provide the reference for the identification of unknown fentanyl analogues by studying the characteristic ions and main fragmentation pathways of fentanyl analogues in the modes of collision induced dissociation (CID) and electron ionization (EI). Methods Nine fentanyl analogues (2, 2'-difluorofentanyl, acetyl fentanyl, fentanyl, butyl fentanyl, valeryl fentanyl, acryloyl fentanyl, furan fentanyl, 4-fluorine isobutyl fentanyl, carfentanyl) were selected and analyzed with ultra-high performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS) and gas chromatography-mass spectrometry (GC-MS). The mass spectrum obtained was analyzed. The CID and EI fragmentation routes of fentanyl analogues were speculated. Results The CID and EI fragmentation pathways were highly similar. In the CID mode, characteristic ions were formed by the carbon-nitrogen bond cleavage between the piperidine ring and the N-phenyl-amide moiety, within the piperidine ring, and between the phenethyl and piperidine ring. While in the EI mode, dissociation of the piperidine ring, as well as cleavage between the piperidine ring and the phenethyl were the main fragmentation pathways. Conclusion This study summarizes the main fragmentation pathways and characteristic ions of fentanyl analogues in the CID and EI modes, which is useful for forensic laboratories to identify and structural analyze fentanyl type new psychoactive substance in practical work.


Subject(s)
Humans , Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Fentanyl/analysis , Gas Chromatography-Mass Spectrometry , Mass Spectrometry
8.
Acta Pharmaceutica Sinica ; (12): 1743-1747, 2017.
Article in Chinese | WPRIM | ID: wpr-779784

ABSTRACT

This study was designed to investigate the metabolites of 5F-AMB by human liver microsomes model in vitro. 5F-AMB was added in the reaction mixture to simulate the metabolic process in human hepatocytes in vivo, and then to determine the reaction points and pathways of metabolism by ultra performance liquid chromatography (UPLC) coupled to high resolution mass spectrum (HR-MS). 5F-AMB generated 9 metabolites in total in the human liver microsomes model. Ester hydrolysis, combination of ester hydrolysis and oxidative defluorination, combination of ester hydrolysis and hydroxylation on pentyl chain moiety and combination of ester hydrolysis and hydroxylation on indazole ring moiety reactions were its main metabolic pathways. The method is fast and efficient so that the ester hydrolysis, combination of ester hydrolysis and oxidative defluorination, combination of ester hydrolysis and hydroxylation on pentyl chain moiety and combination of ester hydrolysis and hydroxylation on indazole ring moiety metabolites of 5F-AMB can be used as the suitable and potential biomarkers in the urine samples.

SELECTION OF CITATIONS
SEARCH DETAIL