Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Medical Journal ; (24): 1075-1078, 2018.
Article in English | WPRIM | ID: wpr-686980

ABSTRACT

<p><b>Background</b>The pro-inflammatory cytokine, interleukin-6 (IL-6), stimulates the metastasis of several neoplasms. An association of its serum level and the single nucleotide polymorphism (SNP) rs1800795 with neuroblastoma (NB) has been reported in American and Italian cohorts. This study was to clarify whether the same association exists in Chinese children.</p><p><b>Methods</b>A total of 130 NB patients, with 77 boys (59%), 53 girls (41%), mean age 41 ± 5 months, were assigned to two groups: high risk (HR) versus intermediate-low risk (non-HR), and 50 healthy children were randomly selected as the age- and gender-matched controls. Peripheral blood samples were analyzed to determine serum IL-6 level using enzyme linked immunosorbent assay and rs1800795 SNPs phenotype using polymerase chain reaction and gene sequencing.</p><p><b>Results</b>There were 87 NB patients in the HR group and 43 NB patients in the non-HR group. A comparison of allele and genotype frequencies of the rs1800795 polymorphism between patients and controls found no association with NB risk (P > 0.05). The frequency of GG+GC genotype was higher in HR-NB patients than in non-HR-NB patients (64.4% vs. 48.8%, P = 0.02), and serum IL-6 level was much higher in HR-NB patients with GG+GC genotype than in HR-NB patients with CC genotype (4.36 ± 1.1 pg/ml vs. 1.83 ± 0.5 pg/ml; P = 0.02), but not in Non-HR-NB patients.</p><p><b>Conclusions</b>The polymorphism rs1800795 is associated with serum IL-6 level and level of NB risk. GG genotype might indicate that the tumor is highly malignant (prone to metastasis) and associated with poor prognosis.</p>


Subject(s)
Child, Preschool , Female , Humans , Male , Asian People , Genetic Predisposition to Disease , Genetics , Genotype , Interleukin-6 , Blood , Genetics , Neuroblastoma , Blood , Genetics , Polymorphism, Single Nucleotide , Genetics , Promoter Regions, Genetic , Genetics
2.
Journal of Experimental Hematology ; (6): 791-795, 2013.
Article in Chinese | WPRIM | ID: wpr-284033

ABSTRACT

This study on determination of leukemia-specific chromosomal abnormalities and their relationship with prognosis of childhood acute leukemia (AL) had an important significance for childhood acute leukemia. In recent years, the efficacy of treatment of childhood AL has been greatly improved, but relapse is still a main factor affecting prognosis. Treatment based on the risk stratification by cytogenetic abnormalities can improve the prognosis and survival rate. In the past 3 decades, the genetic techniques have developed rapidly and many new genetic abnormalities have been found. This review highlights the main chromosomal and genomic abnormalities of 3 common childhood AL, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML).


Subject(s)
Child , Humans , Acute Disease , Leukemia , Genetics , Leukemia, Myeloid, Acute , Genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Genetics
3.
Journal of Experimental Hematology ; (6): 235-241, 2012.
Article in Chinese | WPRIM | ID: wpr-330983

ABSTRACT

The aim of this study was to investigate the effect of suppression of nicotinamide phosphoribosyltransferase (NAMPT) expression on imatinib-sensitivity in chronic myelogenous leukemia (CML) cell line K562 and its mechanisms, NAMPT siRNA was synthesized and transfected into K562 cells. PI/Calcein staining technique was used to determine survival rate of transfected K562 cells at 48th hour after exposure to 1 µmol/L imatinib. MTS method was used to determine the proliferation changes of transfected K562 cell at 48th hour after exposure to different doses of imatinib, then half inhibitory concentration (IC(50)) was calculated. Expression of NAMPT at 3rd-48th hour after exposure to 1 µmol/L imatinib was determined by Western blot. To explore the effect of NAMPT-siRNA and imatinib on the expression of apoptosis-related genes, the microarray data from NCBI GEO Data-Sets was analyzed, then the results were confirmed by Western blot. The luciferase reporter assay was used to determine the effect of NAMPT and imatinib on transcriptional activity of NF-κB transcription factors. The results showed that after exposure to 1 µmol/L imatinib for 3 - 48 h, there was no significant change of NAMPT expression in K562 cells. The expression of NAMPT could be effectively inhibited by the NAMPT-siRNA. After exposure to 1 µmol/L of imatinib for 48 h, the survival rate of NAMPT-siRNA interference group was lower than that of negative control group (P < 0.05), indicating that suppression of NAMPT expression can increase the sensitivity of K562 cells to imatinib and enhance the killing effect of imatinib on K562 cells. The IC(50) of imatinib in NAMPT-siRNA interference group was the lowest compared with that of control group (P < 0.05) after exposure to different concentrations of imatinib for 48 h, the fitted survival curves showed that the slope of NAMPT-siRNA interference group was the largest ranging between 0.01 - 0.1 µmol/L of imatinib. Data mining of expression profiling indicated that the anti-apoptotic factor Bcl-2 decreased in K562 cells treated with either NAMPT-siRNA or imatinib, which was confirmed by Western blot. The inhibitory effect was much more significant when both NAMPT-siRNA and imatinib were used. The results of luciferase reporter assay showed that either NAMPT-siRNA or imatinib decreased transcriptional activity of NF-κB. The decreased effect was much more significant when both NAMPT-siRNA and imatinib were used. It is concluded that survival of K562 cells affected by imatinib may not be due to regulation of expression of NAMPT. When expression of NAMPT decreases, the K562 cells are more sensitive to imatinib, this may be related with the decreased transcriptional activity of NF-κB and its downstream effector Bcl-2.


Subject(s)
Humans , Benzamides , Cytokines , Metabolism , Fusion Proteins, bcr-abl , Metabolism , Imatinib Mesylate , K562 Cells , NF-kappa B , Metabolism , Nicotinamide Phosphoribosyltransferase , Metabolism , Piperazines , Pharmacology , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Pyrimidines , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL