Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E220-E226, 2017.
Article in Chinese | WPRIM | ID: wpr-803821

ABSTRACT

Objective To investigate the biomechanical effects of interbody cage height on cervical spine during anterior cervical discectomy and fusion (ACDF) surgery, so as to provide references for selection of interbody cage. Methods The finite element model of normal cervical spine (C2-7) was built and validated, and the cages with different height (5, 6, 7, 8 mm) were implanted into C5-6 disc (cage5, 6, 7, 8 model). All the models were loaded with pure moment of 1.5 N•m to produce flexion, extension, blending and axial torsion motions on the cervical spine, and the effects of cage height on range of motion (ROM), facet joint stress, intervertebral pressure in cervical spine were investigated. Results The intervertebral angle at the fusion segment increased by 0.68°with per 1 mm-increase of height. The ROM at C5-6 after cage implantation was less than 0.44°. The influence of cage height on ROM in C4-5 was greater than that in C6-7, and the changes of ROM in non-fusion segments were less than 7.3%. The cage height variation had a smaller impact on the facet joint stress and intervertebral pressure. The stresses in the capsular ligament, cage and screw-plate system increased gradually with the increase of cage height, and these stresses in the cage6, 7, 8 models were much higher than those in the cage5 model. Conclusions For patients who need implanting fusion cage, the cage height should be 0-1 mm greater than the original intervertebral space height.

2.
Journal of Medical Biomechanics ; (6): 220-226, 2017.
Article in Chinese | WPRIM | ID: wpr-737328

ABSTRACT

Objective To investigate the biomechanical effects of interbody cage height on cervical spine during anterior cervical discectomy and fusion (ACDF) surgery,so as to provide references for selection of interbody cage.Metheds The finite element model of normal cervical spine (C2-7) was built and validated,and the cages with different height (5,6,7,8 mm) were implanted into C5-6 disc (cage 5,6,7,8 model).All the models were loaded with pure moment of 1.5 N · m to produce flexion,extension,lateral bending and axial rotation motions on cervical spine,and the effects of cage height on range of motion (ROM),facet joint stress,intervertebral pressure in cervical spine were investigated.Results The intervertebral angle at the fusion segment increased by 0.68° with per 1 mm-increase in height.The ROM in C5-6 after cage implantation was smaller than 0.44°.The influence of cage height on ROM in C4-5 was greater than that in C6-7,and the changes of ROM in non-fusion segments were smaller than 7.3%.The cage height variation had a smaller impact on the facet joint stress and intervertebral pressure.The stresses in the capsular ligament,cage and screw-plate system increased gradually with the increase of cage height,and the stresses in cage 6,7,8 models were much higher than those in cage 5 model.Conclusions For patients who need implanting fusion cage,the cage height should be 0-1 mm greater than the original intervertebral space height.

3.
Journal of Medical Biomechanics ; (6): 220-226, 2017.
Article in Chinese | WPRIM | ID: wpr-735860

ABSTRACT

Objective To investigate the biomechanical effects of interbody cage height on cervical spine during anterior cervical discectomy and fusion (ACDF) surgery,so as to provide references for selection of interbody cage.Metheds The finite element model of normal cervical spine (C2-7) was built and validated,and the cages with different height (5,6,7,8 mm) were implanted into C5-6 disc (cage 5,6,7,8 model).All the models were loaded with pure moment of 1.5 N · m to produce flexion,extension,lateral bending and axial rotation motions on cervical spine,and the effects of cage height on range of motion (ROM),facet joint stress,intervertebral pressure in cervical spine were investigated.Results The intervertebral angle at the fusion segment increased by 0.68° with per 1 mm-increase in height.The ROM in C5-6 after cage implantation was smaller than 0.44°.The influence of cage height on ROM in C4-5 was greater than that in C6-7,and the changes of ROM in non-fusion segments were smaller than 7.3%.The cage height variation had a smaller impact on the facet joint stress and intervertebral pressure.The stresses in the capsular ligament,cage and screw-plate system increased gradually with the increase of cage height,and the stresses in cage 6,7,8 models were much higher than those in cage 5 model.Conclusions For patients who need implanting fusion cage,the cage height should be 0-1 mm greater than the original intervertebral space height.

4.
Journal of Medical Biomechanics ; (6): E490-E494, 2016.
Article in Chinese | WPRIM | ID: wpr-804089

ABSTRACT

Objective To study the effect from different structures and material hardness of orthopedic insoles on flatfoot correction. Methods The contours of flatfoot under weight-bearing and non-weight-bearing conditions were scanned by Infoot system. The 3 kinds of medial longitudinal arch height (typeⅠ, Ⅱ, Ⅲ) and 3 kinds of material hardness (30°, 35°, 42°) from orthopedic insoles were used to compare their effects on flatfoot by the embedded insole test system. Results TypeⅠorthopedic insoles could significantly restore the anatomical position by improving the height of navicular bone, and redistribute the concentrated plantar pressure and increase the loading area of medial longitudinal arch with material hardness of 35°. Conclusions The appropriate insole shows a favorable orthopedic effect to ameliorate the foot deformity of flatfoot patients. The research findings lay a theoretical basis on design of the personalized orthopedic insoles.

5.
Journal of Medical Biomechanics ; (6): E111-E117, 2015.
Article in Chinese | WPRIM | ID: wpr-804436

ABSTRACT

Objective To investigate the pattern of load transfer in cervical spine treated with Hybrid surgery using total disc replacement (TDR) and spinal fusion, so as to deepen the understanding of Hybrid surgery from the biomechanical view. Methods A finite element model of cervical spine C3-7 (INTACT model) was built to simulate three types of fusion surgeries at C4-6 degenerative segments: upper TDR combined with lower bone graft fusion (TDR45 model), upper fusion combined with lower TDR (TDR56 model), two-level fusion (Fusion456 model). Results In all surgical models, mobility of the fused levels was almost lost, while mobility of the TDR levels increased. Under the axial load of 160 N, the entire cervical motion was less than 4° in the INTACT model, while the motion in the TDR45 model and TDR56 model increased to 8.2° and 8.9°, respectively. In the TDR56 model, the force transferred through the C5 vertebra decreased by 20%, while the force transferred through the facet joint force was 3.8 times larger than that of the INTACT model. The facet contact force in the TDR45 model increased by 50%. The maximal stress in the INTACT model was 0.8 MPa, while the facet contact force in the TDR45 model and TDR56 model were almost 2 times as that in the INTACT model. Conclusions Due to the increased mobility at the TDR levels, the cervical curvature after Hybrid surgery changes greatly under the axial load. The alteration of spinal alignment will result in a decrease in anterior vertebral section force at the operative level, as well as an increase in facet joint force and facet cartilage stress.

SELECTION OF CITATIONS
SEARCH DETAIL