Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Journal of Cancer Biotherapy ; (6): 156-160, 2023.
Article in Chinese | WPRIM | ID: wpr-965599

ABSTRACT

@#[摘 要] 目的:开发基于PiggyBac(PB)转座系统的电转染CAR-T细胞制备方法并鉴定其体外抗肿瘤功能。方法:采用健康人外周血单个核细胞(PBMC)制备T细胞,通过分子克隆技术将CD19基因克隆到PB质粒(转座子)中后经电转染法将转座子和转座酶质粒导入激活的T细胞中,并测定其转染效率,最后运用流式细胞术及荧光素酶发光实验评估其对人Burkitt's淋巴瘤Raji细胞的杀伤能力。结果:电转染制备的CD19 CAR-T细胞转染效率较高(>60%),呈剂量依赖性,且CAR-T细胞相对于Pan-T细胞对Raji细胞杀伤能力显著(P<0.05)。结论:开发的PB转座系统的电转染方法可行,在体外对肿瘤细胞具有显著的杀伤能力,具备临床运用于CD19 CAR-T细胞制备的潜力。

2.
Chinese Journal of Cancer Biotherapy ; (6): 11-17, 2022.
Article in Chinese | WPRIM | ID: wpr-920495

ABSTRACT

@#[摘 要] 目的:探讨shRNA靶向抑制CD38的方法能否增强抗CD38 CAR-T细胞的抗癌功能。方法:构建shRNA靶向抑制CD38的抗CD38 CAR-T细胞的CAR分子,利用逆转录病毒载体包装成功后转导人原代T细胞,制备CAR-T细胞。实验分为shRNA1 CD38 CAR-T组、shRNA2 CD38 CAR-T组和对照组(shR-NC-CD38 CAR-T细胞)。采用qPCR法检测CAR-T细胞CD38 mRNA相对表达水平,计算CAR-T细胞培养0~14 d的增殖倍数,CFSE法检测CAR-T细胞与人Burkitt淋巴瘤细胞Raji-luc或人多发性骨髓瘤外周血B淋巴细胞RPMI-8226-luc共培养时的增殖情况,荧光素酶化学发光法检测CAR-T细胞在不同效靶比(1∶1、1∶2、1∶4、1∶8)时对Raji-luc和RPMI-8226-luc细胞的杀伤效率,ELISA法检测CAR-T细胞杀伤Raji-luc或RPMI-8226-luc细胞时上清液中IFN-γ水平,FCM检测CAR-T细胞表面耗竭T细胞生物标志物PD-1的表达水平。结果:shR-NC-CD38 CAR、shRNA1-CD38 CAR和shRNA2-CD38 CAR逆转录病毒载体的滴度均为1´107拷贝/mL,转导T细胞后,shR-NC-CD38 CAR-T、shRNA1-CD38 CAR-T和shRNA2-CD38 CAR-T细胞的转导效率(CAR的阳性率)分别为60.3%、67.0%和57.4%。与对照组比较,shRNA2-CD38 CAR-T组细胞中CD38 mRNA的表达水平显著降低(P<0.01),显示shRNA-CD38 CAR-T细胞构建成功。shRNA2-CD38 CAR-T组细胞在体外培养增殖能力更强(P<0.05),对2种CD38阳性的肿瘤细胞的杀伤效率更高(均P<0.05)、IFN-γ释放水平更高(均P<0.05)、细胞表面PD-1的表达水平更低(P<0.05)。结论:成功构建一种shRNA靶向抑制CD38的抗CD38 CAR-T细胞,其抗癌功能表现出明显的优势。

3.
Electron. j. biotechnol ; 19(6): 56-62, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840314

ABSTRACT

Background: Endoglucanase, one of three type cellulases, can randomly cleave internal p-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes. Results: A novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3-11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study. Conclusions: It was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.


Subject(s)
Actinomycetales/enzymology , Cellulases/chemistry , Cellulases/isolation & purification , Cellulases/genetics , Hydrogen-Ion Concentration , Mutagenicity Tests , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL