Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Applied Physiology ; (6): 395-399, 2013.
Article in Chinese | WPRIM | ID: wpr-235349

ABSTRACT

<p><b>OBJECTIVE</b>To assess the relationship of high altitude de-adaptation response (HADAR) with acute high altitude response (AHAR) and cardiac function.</p><p><b>METHODS</b>Ninety-six military personnel of rapid entering into high altitude (3 700 to 4 800 m) with strong physical work were analyzed, all subjects were male, aged 18 - 35 years. According to the symptomatic scores of AHAR were divided into 3 groups: sever AHAR (group A, 24), mild to moderate AHAR (group B, 47) and non-AHAR (group C, 25) at high altitude. According to the symptomatic scores of HADAR were divided into 3 groups: severe HADAR (group E, 19), mild to moderate HADAR (group F, 40) and non-HADAR (group G, 37) after return to lower altitude (1 500 m). Mean pulmonary arterial pressure (mPAP), right ventricular internal dimension (RVID), outflow tract of right ventricle (RVOT), left ventricular internal dimension (LVID), left ventricular ejection fraction (LVEF), cardiac muscle work index (Tei index), creatine kinase isoenzymes-MB (CK-MB), lactic dehydrogenase isoenzyme-1 (LDH-1) were measured at high altitude stayed 50 days and after return to lower altitude 12 h, 15 d, and 30 d. Fifty healthy volunteers (group D) at 1 500 m altitude served as control.</p><p><b>RESULTS</b>Level of mPAP, RVID, RVOT, RVID/LVID ratio, Tei index, CK-MB,and LDH-1 were higher, and LVEF was lower in group A than those in group B, C and D, there were significant differences between group B and C, C and D (all P < 0.01). AHAR scores were positively correlated with HADAR scores (r = 0.863, P < 0.01). Twelve hours after return to lower altitude, level of mPAP, RVID, RVOT, RVI/LVID ratio, Tei index, CK-MB, and LDH-1 were higher, and LVEF was lower in group E than those in group F, G and D, there were significant differences between group F and G, G and D (all P < 0.01). Fifteen days after return to lower altitude, level of mPAP, RVID, RVOT, RVID/LVID ratio were higher in group E than those in group F, G, and D, there were significant differences between group F and G, and D (P < 0.01 or P < 0.05), there were no significant differences between group G and D (all P > 0.05), LVEF, Tei index, CK-MB, LDH-1 showed no significant differences among groups (all P > 0.05). Thirty days after return to lower altitude, these parameters in group E, F, and G showed no significantly differences compared with those of group D (all P > 0.05).</p><p><b>CONCLUSION</b>The severity of HADAR is associated with severity of AHAR and cardiac injury, the more serious of AHAR and cardiac injury at high altitude, the more serious of HADAR and cardiac injury after return to lower altitude, the more long of restore of right cardiac morphologic injury.</p>


Subject(s)
Adolescent , Adult , Humans , Male , Young Adult , Adaptation, Physiological , Altitude , Altitude Sickness , Metabolism , Case-Control Studies , Heart , Heart Function Tests , Myocardium
2.
Chinese Journal of Applied Physiology ; (6): 457-460, 2011.
Article in Chinese | WPRIM | ID: wpr-351129

ABSTRACT

<p><b>OBJECTIVE</b>To assess the effect of oxidative stress in development of acute high altitude response (AHAR) during the process of strong physical work at high altitude and its change after return to lower altitude.</p><p><b>METHODS</b>Ninety-six officers and soldiers of rapid entering into high altitude (3 700 m) with strong physical work were analyzed, all subjects were male, aged 18-35 years. According to the symptomatic scores of AHAR were divided into 3 groups: severe AHAR (group A, n = 24), mild AHAR (group B, n = 47) and without AHAR (group C, n = 25). Levels in serum 8-iso prostaglandinF2alpha(8-iso-PGF2alpha), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured at higher altitude stayed 50 d and after return to lower altitude (1 500 m) 12 h and 15 d, and 50 healthy volunteers (group D) at 1 500 m altitude served as controll.</p><p><b>RESULTS</b>Levels of serum 8-iso-PGF2alpha and MDA [(9.53 +/- 0.47) microg/L, (8.91 +/- 0.39) micromol/L] were significantly higher in group A than those in group B [(8.34 +/- 0.42) microg/L, (7.31 +/- 0.32) micromol/L] , group C [(7.02 +/- 0.48) microg/L, (6.41 +/- 0.23) micromol/L] and group D [(5.13 +/- 0.56) microg/L, (5.48 +/- 0.33) micromol/L], (all P < 0.01), and serum SOD [(52.08 +/- 3.44) micro/ml] was significantly lower in group A than that in group B [62.27 +/- 2.54) micro/ml], group C [(71.99 +/- 3.35) micro/ml] and group D [(80.78 +/- 3.44) micro/ ml] (all P < 0.01), there were significant differences between group B and C, C and D (all P < 0.01). At altitude 3 700 m 50 d, AHAR scores was positively correlated with serum 8-iso-PGF2alpha and MDA (all P < 0.01), negatively correlated with SOD (P < 0.01). Serum 8-iso-PGF2alpha and MDA were negatively correlated with SOD (all P < 0.01). Levels of serum 8-iso-PGF2alpha and MDA were significantly higher at altitude of 3 700 m 50 d than those at altitude of 1 500 m 12 h,15 d in group D (all P < 0.01), and serum SOD was significantly lower than that at 1 500 m 12 h,15 d in group D (all P < 0.01), there were significantly difference between at 1 500 m 12 h and 15 d (all P < 0.01), there were no difference between at 15 d in group D (all P > 0.05).</p><p><b>CONCLUSION</b>The more serious of oxidative stress and oxidative/antioxidative imbalance, the more serious of AHAR, oxidative stress and oxidative/antioxidative imbalance may be involved in the development of AHAR. The changes were obviously improved after return to lower altitude 12 h, and recovered to normal after 15 d.</p>


Subject(s)
Adolescent , Adult , Humans , Male , Young Adult , Altitude , Altitude Sickness , Oxidative Stress , Physiology , Physical Exertion , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL