Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 142-151, 2019.
Article in Chinese | WPRIM | ID: wpr-802013

ABSTRACT

Objective: To explore the mechanism of renal toxicity of Tripterygii Radix et Rhizoma by establishing the active component-target, protein interaction, biological function and pathway network corresponding to the target, and using molecular docking technology. Method: The traditional Chinese medicine(TCM) systems pharmacology database(TCMSP) and the comparative toxicogenomics database (CTD) were used to screen The toxic candidate compounds.In PubChem database, convert all candidate compounds into standard Canonical SMILES format, SMILES format file import SwissTargetPrediction platform, target prediction, will be the target of the corresponding compounds in TCMSP supplement with uniprot converts protein antipodal gene name, and from the human genome database (GeneCards) seek to compare the renal related gene protein,overlapping proteins were screened as potential renal toxicity targets of Tripterygii Radix et Rhizoma.Cytoscape software was used to construct the candidate components-target network of Tripterygii Radix et Rhizoma.Cytoscape software was combined with String database to draw the protein interaction network, DAVID platform was used to analyze the biological function of the target and the pathways involved, and Glide software was used to verify the combination of the key protein and the candidate components of tripterygiumwildiitoxicity. Result: The screening of 30 kinds of candidates for toxic ingredients of Tripterygii Radix et Rhizoma, involving 209 renal toxicity targets, network analysis results showed that Tripterygii Radix et Rhizoma by amino acid metabolism,phospholipid metabolism, catecholamine metabolism, inhibiting renal organic anion transporter Oatl, Oat2, Oat3 function, and inducing apoptosis, and participate in the mitogen-activated protein kinase(MAPK) signaling pathways, JAK-STAT signaling pathway,vascular endothelial growth factor(VEGF)signaling pathways,Toll-like receptor signaling pathway,ERBB signaling pathway, FcεRI signaling pathway, peroxisome proliferators-activated receptors(PPAR) signaling pathway such as toxic to the kidneys. Conclusion: The mechanism of kidney toxicity of Tripterygii Radix et Rhizoma was explored by using the characteristics of multi-component, multi-target and multi-pathway of TCM, which provided new ideas and methods for further research on the mechanism of kidney toxicity of Tripterygii Radix et Rhizoma.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 161-169, 2019.
Article in Chinese | WPRIM | ID: wpr-801914

ABSTRACT

Objective:The mechanism of action of cardiac toxicity of Radix Aconiti Agrestis was explored by establishing the active components-targets network of Radix Aconiti Agrestis, protein interaction network, the biological function and pathway network of targets, and using molecular docking technology. Methods:The Traditional Chinese Medicine Systems Pharmacology(TCMSP) database and the Comparative Toxicogenomics Database(CTD) were used to filtrate the toxic candidates of Radix Aconiti Agrestis. Predicting the functional targets of toxic candidates of Radix Aconiti Agrestis by PharmMapper and compared with the cardiac related gene proteins found in the human gene database (GeneCards), and the overlapping proteins were selected as potential cardiac toxicity targets of Radix Aconiti Agrestis. The Cytoscape software was used to construct the network between toxic candidate components and targets. The protein interaction network was mapped by the String database combined with Cytoscape software. The biological functions of the targets and the involved pathways were analyzed with the DAVID platform.The binding of the key proteins with certain toxic candidate components of Radix Aconiti Agrestis was verified by Discover Studio software finally. Results:There were six candidates for toxic ingredients, which involving 27 cardiac toxicity targets. Network analysis results show that the targets were mainly by participating in the heart of phosphorus metabolism, regulation and other related phosphorus metabolism and regulation of phosphorylation and FKBP1A,TGF4-β2, INSR targets to have an important impact on the metabolism,development and form of the heart,and further to have cardiac toxicity. Conclusion:Based on the characteristics of the multi-component, multi-target and multi-pathway of traditional Chinese medicine, the mechanism of cardiac toxicity of Radix Aconiti Agrestis was explored and its possible toxicity was predicted, which provided a new idea and method for further research on the mechanism of cardiac toxicity of Radix Aconiti Agrestis.

SELECTION OF CITATIONS
SEARCH DETAIL