Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Medical Education Research ; (12): 650-653, 2023.
Article in Chinese | WPRIM | ID: wpr-991382

ABSTRACT

This paper introduces the teaching method of medical-electrical cross-integration and the teaching practice experience in the past three years by taking the integration of medicine and electrical engineering as an example. Starting from the analysis of the characteristics of learning situation, the teaching introduction process, the case discussion and analysis, and the after-class tracking and improvement, this paper analyzes the characteristics of the medical-electrical cross-teaching and proposes the corresponding teaching methods and supporting cases. Preliminary exploration attempts show that this teaching method can improve students' comprehensive ability, especially multidisciplinary thinking ability, and has a certain positive effect.

2.
Chinese Journal of Endocrine Surgery ; (6): 376-377, 2023.
Article in Chinese | WPRIM | ID: wpr-989962

ABSTRACT

The typical manifestations of primary aldosteronism (PA) are hypertension with or without hypokalemia, high aldosterone, and low renal level. However, PA with normal blood pressure is rare in clinical practice. This article reported the diagnosis and treatment of a patient with subclinical PA, admitted for "adrenal accidental tumor" with normal blood pressure and serum potassium. We summarized and analyzed the clinical characteristics and treatment strategies, in order to provide some reference for clinicians.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 157-167, 2023.
Article in Chinese | WPRIM | ID: wpr-973145

ABSTRACT

ObjectiveTo screen and validate key enzyme genes affecting the polysaccharide content in different Polygonatum species and perform in-depth amino acid sequence analysis by transcriptomic analysis of P. zanlanscianense, P. kingianum, and P. cyrtonema rhizomes to enrich the transcriptome data of Polygonatum plants and provide references for polysaccharide biosynthesis mechanism and genetic improvement. MethodThe Polygonatum transcriptome was sequenced and analyzed using the Illumina NovaSeq high-throughput sequencing platform, and the differences in the transcriptomes of the three Polygonatum species were compared and according to the annotations of Nr, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The key enzymes in the polysaccharide metabolism pathway were screened, and the expression of key enzyme genes was clustered and correlated with the polysaccharide content. Finally, Real-time polymerase chain reaction (Real-time PCR) was performed to validate the eight key enzyme genes, and the key genes of polysaccharide biosynthesis were further screened for homologous gene sequence analysis in combination with sequencing results, followed by constructing phylogenetic trees, predicting motifs, conserved structural domains, protein sequence isoelectric points, and molecular weights, and constructing 3D protein structures by using homology modeling method. ResultThe annotation of the Nr database revealed that three Polygonatum species had the highest gene homology with Asparagus officinalis. GO database annotation results showed that three Polygonatum species differed significantly in binding, catalytic activity, metabolic processes, and cellular components, while the KEGG pathway annotation results indicated that three Polygonatum species differed significantly in the starch and sucrose metabolic pathway and galactose metabolic pathway. According to clustering analysis, correlation analysis, Real-time PCR, expression profiles, and structural and functional predictions of amino acid sequences, the key enzyme significantly affecting the polysaccharide content in different Polygonatum species was inferred to be β-fructofuranosidase (sacA). ConclusionSacA may be the main influencing factor for the difference in polysaccharide content of Polygonatum, and is also an important reason why Polygonatum polysaccharides are mainly fructans.

SELECTION OF CITATIONS
SEARCH DETAIL