Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1354-1362, 2013.
Article in Chinese | WPRIM | ID: wpr-242475

ABSTRACT

Lignocellulosic biomass represents an abundant, low-cost and renewable source of potentially fermentable sugars. It is acandidate besides petroleum as feedstock for fuel and chemical production. Recent researches on utilizing lignocellulosicsas feedstock boost development of numerous-promising processes for a variety of fuels and chemicals, such as biodiesel, biohydrogen and ethanol. However, high cost in depolymerization is a primary obstacle preventing the use of lignocellulosic biomass as feedstock. Consolidated bioprocessing (CBP), refers to the bioprocess without any exogenous cellulolyotic enzymes added, converting the lignocellulosic material into biochemicals directly, which could potentially avoid the cost of the dedicated enzyme generation step by incorporating enzyme-generating, biomass-degrading and bioproduct-producing capabilities into a single organism through genetic engineering. There are two CBP strategies, native strategy and recombinant strategy. We mainly introduce the recombinant strategy, including its principle, the two responding styles, the contributions of synthetic biology and metabolic engineering and the future challenges.


Subject(s)
Bacteria , Genetics , Metabolism , Biofuels , Biotechnology , Methods , Ethanol , Metabolism , Fungi , Genetics , Metabolism , Hydrolases , Genetics , Industrial Microbiology , Methods , Lignin , Metabolism , Metabolic Engineering , Methods , Recombinant Proteins , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL