Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 279-293, 2023.
Article in English | WPRIM | ID: wpr-982546

ABSTRACT

Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.


Subject(s)
Aged , Animals , Humans , Aging/genetics , Forkhead Transcription Factors/metabolism , Myocytes, Cardiac/metabolism , Primates/metabolism , Repressor Proteins/metabolism , Transcriptome , Macaca fascicularis/metabolism
2.
Protein & Cell ; (12): 809-824, 2020.
Article in English | WPRIM | ID: wpr-880897

ABSTRACT

Many human genetic diseases, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by single point mutations. HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene. Base editors (BEs) composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions. Here, we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA (gRNA) targeting the LMNA gene via microinjection into monkey zygotes. Five out of six newborn monkeys carried the mutation specifically at the target site. HGPS monkeys expressed the toxic form of lamin A, progerin, and recapitulated the typical HGPS phenotypes including growth retardation, bone alterations, and vascular abnormalities. Thus, this monkey model genetically and clinically mimics HGPS in humans, demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.


Subject(s)
Animals , Female , Humans , Disease Models, Animal , Gene Editing , Lamin Type A/metabolism , Macaca fascicularis , Progeria/pathology
3.
Protein & Cell ; (12): 483-504, 2020.
Article in English | WPRIM | ID: wpr-828752

ABSTRACT

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.

4.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-828746

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
5.
Protein & Cell ; (12): 483-504, 2020.
Article in English | WPRIM | ID: wpr-828588

ABSTRACT

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.

6.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-828582

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
7.
Protein & Cell ; (12): 740-770, 2020.
Article in English | WPRIM | ID: wpr-827016

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging , Genetics , Allergy and Immunology , Betacoronavirus , CD4-Positive T-Lymphocytes , Metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Coronavirus Infections , Allergy and Immunology , Cytokine Release Syndrome , Allergy and Immunology , Cytokines , Genetics , Disease Susceptibility , Flow Cytometry , Methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Immune System , Cell Biology , Allergy and Immunology , Immunocompetence , Genetics , Inflammation , Genetics , Allergy and Immunology , Mass Spectrometry , Methods , Pandemics , Pneumonia, Viral , Allergy and Immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
8.
Protein & Cell ; (12): 417-435, 2019.
Article in English | WPRIM | ID: wpr-757930

ABSTRACT

Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders.

9.
Protein & Cell ; (12): 249-271, 2019.
Article in English | WPRIM | ID: wpr-757893

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.

10.
Protein & Cell ; (12): 649-667, 2019.
Article in English | WPRIM | ID: wpr-757890

ABSTRACT

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.

11.
Protein & Cell ; (12): 945-965, 2018.
Article in English | WPRIM | ID: wpr-757939

ABSTRACT

Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.


Subject(s)
Humans , Blood Vessels , Cell Biology , Metabolism , CRISPR-Cas Systems , Embryonic Stem Cells , Cell Biology , Gene Knockout Techniques , Homeostasis , NF-kappa B , Metabolism , Transcription Factor RelA , Metabolism
12.
Protein & Cell ; (12): 478-488, 2016.
Article in English | WPRIM | ID: wpr-757417

ABSTRACT

Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN-deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.


Subject(s)
Animals , Humans , Mice , Ascorbic Acid , Pharmacology , Cell Cycle Checkpoints , Cell Line , Cellular Senescence , DNA Damage , DNA Repair , DNA Replication , Disease Models, Animal , Heterochromatin , Metabolism , Pathology , Mesenchymal Stem Cells , Metabolism , Pathology , Nuclear Lamina , Metabolism , Pathology , Reactive Oxygen Species , Metabolism , Telomere Homeostasis , Werner Syndrome , Drug Therapy , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL