ABSTRACT
The environmental risk assessment of the insect resistant genetically modified maize MON 89034 (Reference EFSA/GMO/BE/2011/90) has been performed by the Panel on Genetically Modified Organisms (GMO) of the Norwegian Scientific Committee for Food Safety (VKM). VKM has been requested by the Norwegian Directorate for Nature Management and the Norwegian Food Safety Authority to issue a preliminary scientific opinion on the safety of the genetically modified maize MON 89034 (Unique identifier MON-89Ø34-3) for cultivation, and submit relevant scientific comments or questions to EFSA on the application EFSA/GMOBE/2011/90. The current submission is intended to complement application EFSA-GMO-NL-2007-37, which was approved by Commission Decision 2009/813/EC of 30 October 2009, authorising the placing on the market of products containing, consisting of, or produced from genetically modified maize MON 89034 (scope import, processing, food and feed). Maize MON89034 has previously been assessed by the VKM GMO Panel in connection with EFSA´s public hearing of the application EFSA/GMO/NL/2007/37 (VKM 2008a). Preliminary health- and environmental risk assessments of several stacked events, with MON 89034 as one of the parental lines, have also been performed by the VKM GMO Panel (VKM 2009a, b, c; VKM 2010a,b). The environmental risk assessment of the maize MON 89034 is based on information provided by the applicant in the application EFSA/GMO/BE/2011/90, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 89034 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c). The scientific risk assessment of maize MON 89034 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes and evaluations of the post-market environmental plan. In line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms. The genetically modified maize MON 89034 was developed to provide protection against certain lepidopteran target pest, including European corn borer (Ostrinia nubilalis) and Mediterranean corn borer (Sesamia nonagrioides). Protection is achieved through expression in the plant of two insecticidal Cry proteins, Cry1A.105 and Cry2Ab2, derived from Bacillus thuringiensis, a common soil bacterium. Cry1A.105, encoded by the cry1A.105 gene, is a chimeric protein made up of different functional domains derived from three wild-type Cry proteins from B. thuringiensis subspecies kurstaki and aizawai. The Cry2Ab2 protein is encoded by the cry2Ab2 gene derived from B. thuringiensis subspecies kurstaki. Molecular characterization: Appropriate analysis of the integration site, including flanking sequence and bioinformatics analysis, has been performed to characterise the transformation event MON 89034. The results of the segregation analysis are consistent with a single site of insertion for the cry1A.105 and cry2Ab2 gene expression cassettes and confirm the results of the molecular characterisation. Molecular analysis of both self-pollinated and cross-fertilised lines, representing a total of seven different generations, indicates that the inserted DNA is stably transformed and inherited from one generation to the next. No genes that encode resistance to antibiotics are present in the genome of MON 89034 maize. The molecular characterisation confirmed the absence of both the aad and nptII genes, which were used in the cloning and transformation process. Event MON 89034 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2008a). Comparative assessment: The field trials for comparative assessment of agronomic and phenotypic characteristics of maize MON 89034 in the USA (2004-2005) and Europe (2007), have been performed in accordance with the EFSAs guidelines for risk assessment of genetically modified plants and derived food and feed (EFSA 2010, 2011a). Based on results from the comparative analyses, it is concluded that maize MON 89034 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of the lepidopteran-protection trait. The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of MON 89034 compared to conventional maize. Evaluations of ecological interactions between maize MON 89034 and the biotic and abiotic environment indicate no unintended effects of the introduced trait on agronomic and phenotypic characteristics. Environmental risk: There are no reports of the target Lepidopteran species attaining pest status on maize in Norway. Since there are no Bt-based insecticides approved for use in Norway, and lepidopteran pests have not been registered in maize, issues related to resistance evolution in target pests are not relevant at present for Norwegian agriculture. Published scientific studies show no or negligible adverse effects of Cry1A.105 and Cry2Ab2 proteins on non-target arthropods that live on or in the vicinity of maize plants. Cultivation of maize MON 89034 is not considered to represent a threat to the prevalence of red-listed species in Norway. Few studies have been published examining potential effects of Cry1A.105 and Cry2Ab toxin on ecosystems in soil, mineralization, nutrient turnover and soil communities. Some field studies have indicated that root exudates and decaying plant material containing Cry proteins may affect population size and activity of rhizosphere organisms (soil protozoa and microorganisms). However, data are only available from short term experiments and predictions of potential long term effects are difficult to deduce. Most studies conclude that effects on soil microorganisms and microbial communities are transient and minor compared to effects caused by agronomic and environmental factors. Few studies have assessed the impact of Cry proteins on non-target aquatic arthropods and the fate of these proteins in senescent and decaying maize detritus in aquatic environments. Further studies with better experimental design are needed for the assessment of the potential effects of Bt crops on aquatic organisms. However, exposure of non-target organisms to Cry proteins in aquatic ecosystems is likely to be very low, and potential exposure of Bt toxins to non-target organisms in stream ecosystems in Norway is considered to be negligible. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation with which maize can hybridise and form backcross progeny. Vertical gene transfer in maize therefore depends on cross-pollination with other conventional or organic maize varieties. In addition, unintended admixture of genetically modified material in seeds represents a possible way for gene flow between different crop cultivations. The risk of pollen flow from maize volunteers is negligible under Norwegian growing conditions. In addition to the data presented by the applicant, the VKM GMO Panel is not aware of any scientific report of increased establishment and spread of maize MON 89034 and any change in survival (including over-wintering), persistence and invasiveness capacity. Because the general characteristics of maize MON 89034 are unchanged, insect resistance are not likely to provide a selective advantage outside cultivation in Norway. Since MON 89034 has no altered agronomic and phenotypic characteristics, except for the specific target pest resistance, the VKM GMO Panel is of the opinion that the likelihood of unintended environmental effects due to the establishment and survival of maize MON 89034 will be no different to that of conventional maize varieties in Norway The environmental risk assessment will be completed and finalized by the VKM Panel on Genetically Modified Organisms when requested additional information from the applicant is available.
ABSTRACT
The present report is based on data from the 2010 EFSA Report on pesticide residues in food, the Norwegian monitoring programmes 2007-2012 and data from peer reviewed literature and governmental agencies. It is a challenge to perform quantitative estimates and comparative studies of residue levels due to large variation in the measured levels, and the large number of different pesticides present in the samples. Thus, the focus is on the frequency of observed contaminations in relation to regulatory limits and to present examples to illustrate the variation in residue values and number of detected substances. Pesticide residues in conventional and organic products: Of the 12,168 samples (plant- and animal products) in the 2010 EU-coordinated programme, 1.6% exceeded the respective maximum residue level (MRL) values, and 47.7% had measurable residues above the limit of quantification (LOQ), but below or at the MRL. Of the 1168 samples analysed in Norway in 2012 (from both imported and domestic products), 1.9% exceeded MRL and 53% contained measurable pesticide residues. Direct comparison of these values is however not possible, since they contain different types of food samples, and are analysed for a different number of pesticides. When organic and conventional samples from fruit, vegetables and other plant products in the 2010 EU-coordinated programme were compared, 4.2% of the conventional and 1.0% of the organic samples exceeded the MRL values, while 43.2% of the conventional and 10.8% of the organic samples had measurable residues below or at the MRL value. Most of the pesticide residues detected in organic samples are not permitted for use in organic farming. Of the 624 organic samples analysed in Norway 2007 - 2012, 0.2% (one sample) had residues exceeding MRL, while measurable residues were detected in 1.8% of the samples (11 samples). Conventional products were often found to contain different pesticides while most organic samples were found to contain few or only one type of pesticide. Lack of data on pesticide residue levels of organic samples in the EU-coordinated programme, and few Norwegian samples do not allow for a quantitative comparison of pesticide residue levels in organic and conventional samples. Comparative estimation of pesticide residues faces a number of challenges and uncertainties. However, it seems unquestionable based on available data that organic plant products contain fewer and substantially lower amounts of pesticide residues than conventional products. Health risk associated with pesticide residues: The general level of pesticide residues in both conventional and organic food is low, and well below what is likely to result in adverse health effects. This conclusion is based on the comparison of estimated dietary exposure with toxicological reference values i.e. acceptable daily intake (ADI) for chronic effects, and acute reference dose (ARfD) for acute effects. The finding of pesticide residues that exceeds established regulatory limits in a minority of tested samples is not considered to represent a health risk. When dietary exposure that was estimated in six different food commodities in the 2010 EUcoordinated programme was compared with their relevant reference values, EFSA concluded that for 79 of 18243 conventionally grown fruit and vegetable samples, a short-term acute consumer health risk could not be excluded. The conclusion was based on the exceeding of ARfD. None of these 79 samples were organic. It is important to also consider that the exceeding of the acute reference value only occurred in 0.4% of the samples and that the scenario used for acute intake assessment is conservative, suggesting that the toxicological implications are limited. This is also reflected in the chronic exposure assessment, where none of the samples were found to exceed the toxicological reference value ADI. Dietary exposure assessments on the basis of Norwegian samples of apples, tomatoes, carrots, strawberries and lettuce did not show an exceeding of any toxicological reference value. Combined exposure and cumulative risk assessment of pesticide residues: No generally accepted methodology is at present established for cumulative risk assessment of combined exposure to pesticide residues. Available data suggest however that combined exposure is not likely to result in increased human health risk.
ABSTRACT
The Norwegian Food Safety Authority (Mattilsynet) asked the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet) to assess if the criteria for safe use of plant ingredients in diets for aquacultured fish fulfil the Feed regulative §7 to “not induce negative health effects in the animal”, and in this context aquacultured fish. The use of feed ingredients of both plant and animal origin is set by the regulation “Forskrift 7. November 2002 nr 1290”, and amendments. The objective of the regulation is to protect animals, consumers and the environment. For animals, the feed shall not pose a risk, or danger, to their health. Aspects to be assessed were whether the changes in fish diet ingredient composition seen in recent years with high levels of plant ingredients, plus additions of immunostimulants, would in any manner challenge fish health and if any ingredient should be limited due to its negative effect, or induce any long-term negative effect. “Long-term” here extends beyond normal production time for consumption, e.g. when substances that might affect fish health are included in broodstock diets. Atlantic salmon (Salmo salar), rainbow trout (Onchorhyncus mykiss), Atlantic halibut (Hippoglossus hippoglossus) and Atlantic cod (Gadus morhua) should especially be addressed. However, since all life stages should be included, especially broodstock, and also possible long-term effects, and literature on these for the requested species is scarce, the assessment mentions studies on other species when relevant. With the exception of full-fat and extracted soybean meal for salmonids, substituting at least part of the fishmeal fraction of aquafeeds with individual plant ingredients is promising, at least in the short to medium term. Indeed in some cases, diets containing up to 20% inclusion level of high-quality plant protein sources have resulted in better nutrient digestibility and growth parameters than the fishmeal-based control diets. When substituting fishmeal with plant ingredients, however, it is necessary to balance the diets regarding limiting amino acids and minerals. Adding plant proteins to fish diets result in the introduction of anti-nutritional factors. There is an urgent need to investigate consequences of various anti-nutritional factors, individually and in combinations, to nutrient digestibility, utilization and metabolism as well as to intestinal function, structure, defence mechanisms and microbiota. Long-term effects also merit investigation. This will aid in the ability to predict how a newly introduced plant ingredient as well as combinations of plant ingredients may affect the fish and identify steps needed to avoid adverse health effects. As many of the potential disadvantages of using plant oils in salmonid diets are related to either very high levels of n-6 PUFA (most available oils) or very high levels of linseed oil, it would be recommended that mixtures of plant oils should be used as feed inclusions. By adjusting the ratio of n-6 and n-3 the level of eicosanoids can be controlled. By including palm oil, potential problems in lipid digestibility and transport can be controlled. A standard inclusion of soybean lecithin may also be advisory. These and other variants of mixtures of oil sources have been explored in recent years with some success in salmonid fish. Such mixtures do not seem to be necessary for marine fish. Modern finfish aquaculture faces problems such as bone and skeletal deformities, cataracts, heart disorders, unspecific ulceration and various digestive disorders including intestinal colic in Atlantic cod, gastric dilatation (bloat) in rainbow trout, and intestinal tumours, at low incidence, in Atlantic salmon broodstock. Most of the mentioned problems have been related to malnutrition, feed, intensive growth and/or unfavourable environmental conditions. The disorders are often not lethal, but may imply a fish welfare problem and increase the susceptibility to secondary disorders and infectious diseases. Major changes in feed composition and feed ingredients may increase the risk for such production-related disorders in intensive fish farming. Care should be taken when choosing plant alternatives, both types and qualities, to prevent nutrition-related diseases such as skeletal deformities, cataracts, heart conditions, and other, unspecific symptoms. The change from marine- to plant-based diet ingredients, results in changed profile and content of undesirable substances. The list of undesirable substances included in the feed legislation is, in general, sufficient, but it should be considered to include pesticides in use today and more of the mycotoxins. Currently only aflatoxin B1 is included, while only recommendations exist for other mycotoxins. Studies of dietary exposure to undesirable substances, e.g. pesticides and mycotoxins, and their toxic effects and toxicokinetics in fish are scarce. To date, the application of pre- and probiotics for the improvement of aquatic environmental quality and for disease control in aquaculture seems promising; however, the information is limited and sometimes contradictory. Currently there are numerous gaps in existing knowledge about exogenous nucleotide application to fish including various aspects of digestion, absorption, metabolism, and influences on various physiological responses, especially expression of immunogenes and modulation of immunoglobulin production. As limited information is available about the effect of immunostimulants, prebiotics and nucleotides on gut morphology, this topic should be given high priority in future studies. Heat processing of raw materials and of the complete fish diets may potentially alter nutritional properties of plant materials. However, the negative effects appear to be modest under practical conditions.