Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Braz. j. med. biol. res ; 53(3): e8853, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089343


Anaphylactic shock can be defined as an acute syndrome, and it is the most severe clinical manifestation of allergic diseases. Anaphylactoid reactions are similar to anaphylactic events but differ in the pathophysiological mechanism. Nitric oxide (NO) inhibitors during anaphylaxis suggest that NO might decrease the signs and symptoms of anaphylaxis but exacerbate associated vasodilation. Therefore, blocking the effects of NO on vascular smooth muscle by inhibiting the guanylate cyclase (GC) would be a reasonable strategy. This study aimed to investigate the effects of NO/cGMP pathway inhibitors methylene blue (MB), Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and indigo carmine (IC) in shock induced by compound 48/80 (C48/80) in rats. The effect was assessed by invasive blood pressure measurement. Shock was initiated by C48/80 intravenous bolus injection 5 min before (prophylactic) or after (treatment) the administration of the inhibitors MB (3 mg/kg), L-NAME (1 mg/kg), and IC (3 mg/kg). Of the groups that received drugs as prophylaxis for shock, only the IC group did not present the final systolic blood pressure (SBP) better than the C48/80 group. Regarding shock treatment with the drugs tested, all groups had the final SBP similar to the C48/80group. Altogether, our results suggested that inhibition of GC and NO synthase in NO production pathway was not sufficient to revert hypotension or significantly improve survival.

Animals , Male , Rats , Cyclic GMP/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Anaphylaxis/drug therapy , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/antagonists & inhibitors , Rats, Wistar , NG-Nitroarginine Methyl Ester/administration & dosage , Disease Models, Animal , Indigo Carmine/administration & dosage , Methylene Blue/administration & dosage
Braz. j. med. biol. res ; 49(2): e5007, 2016. tab, graf
Article in English | LILACS | ID: lil-766980


Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control.

Animals , Male , Rabbits , Acetylcholine/administration & dosage , Acidosis/physiopathology , Blood Pressure/drug effects , Endothelium, Vascular/physiopathology , Hypotension/chemically induced , Acute Disease , Acid-Base Imbalance/metabolism , Acidosis/chemically induced , Acidosis/metabolism , Blood Pressure Determination , Bicarbonates/blood , Blood Pressure/physiology , Chronic Disease , Carbon Dioxide/analysis , Endothelium, Vascular/metabolism , Hemodynamics/physiology , Hyperventilation/metabolism , Luminescence , Nitrates/blood , Nitric Oxide/metabolism , Nitrites/blood
Braz. j. med. biol. res ; 41(6): 439-445, June 2008.
Article in English | LILACS | ID: lil-485854


Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space (pHo) and those occurring within the intracellular space (pHi), although, extracellular and intracellular compartments influence each other. Consistent with the multiple events involved in the changes in tone produced by altered pHo, including type of vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved. The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular reactivity: nitric oxide (NO/cGMP-dependent), prostacyclin (PGI2/cAMP-dependent) and hyperpolarization. During the last decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers to develop more studies about these issues.

Animals , Humans , Acid-Base Equilibrium/physiology , Blood Vessels/physiopathology , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Vasodilation/physiology , Acidosis/metabolism , Acidosis/physiopathology , Alkalosis/metabolism , Alkalosis/physiopathology , Epoprostenol/physiology , Hydrogen-Ion Concentration , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/physiology