Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
Acta Pharmaceutica Sinica ; (12): 2911-2917, 2020.
Article in Chinese | WPRIM | ID: wpr-862285


Zika virus (ZIKV) is an emerging mosquito-borne virus that is associated with severe congenital brain malformations in the fetus and Guillain-Barré syndrome in adults. However, there are currently no drugs or preventive vaccines approved for ZIKV infection. Here, ciclesonide has been found significantly against ZIKV activity by plaque and cytotoxicity assays in vitro, and its 50% effective concentration (EC50) to ZIKV SZ01 and MR766 are (0.40 ± 0.22) and (1.59 ± 1.08) μmol·L-1, respectively. Its 50% cytotoxic concentration (CC50) to Vero cells are (64.70 ± 7.33) μmol·L-1; Virus yield reduction and Western blot assays showed that ciclesonide can inhibit replication of ZIKV. In addition, ciclesonide can also inhibit the replication of ZIKV in A549 cells; the results of time of drug addition analysis indicated that ciclesonide mainly acts on the ZIKV RNA synthesis stage. Ciclesonide can also inhibit the internalization of ZIKV. These results indicated that ciclesonide is a potential drug against ZIKV.

Acta Pharmaceutica Sinica ; (12): 1582-1587, 2019.
Article in Chinese | WPRIM | ID: wpr-780250


Tenofovir disoproxil fumarate (TDF) is a nucleoside analogue that has been widely used for clinical treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infection. The aim of this study was to investigate whether TDF has anti-Zika virus (ZIKV) activity in vitro. The inhibitory effect of TDF on ZIKV was detected by plaque reduction assay. Then, the anti-ZIKV activity of TDF at RNA level and protein level was verified by real time quantitative PCR and Western blot. Finally, MTT assay was used to determine the cytotoxicity of TDF. Our results showed that TDF not only reduced the formation of plaque after ZIKV infection, but also inhibited the replication of ZIKV RNA or expression of ZIKV NS2B protein. The 50% effective concentration (EC50) of TDF in inhibition of ZIKV replication were 14.96-27.47 μmol·L-1, while that of ribavirin was 56.01 ± 12.16 μmol·L-1, which served as the positive control. The cytotoxicity of TDF and ribavirin in Vero cells were very low, with their 50% cytotoxic concentration (CC50) values being greater than 500 μmol·L-1. The therapeutic index of TDF calculated by CC50/EC50 was greater than 18.20, which was significantly higher than that of ribavirin. The results suggest that TDF has good anti-ZIKV activity in vitro and is expected to become a candidate drug for anti-ZIKV therapy.

Article in Chinese | WPRIM | ID: wpr-743053


C-C chemokine receptor 5 (CCR5), one of the major co-receptors of HIV-1, can mediate the fusion of HIV-1 to cell membranes. CCR5 antagonists can bind to CCR5 and cause conformational changes in CCR5, thus blocking HIV-1 infection. Several small molecule CCR5 antagonists with strong activity and good tolerance have been screened and entered the clinical trials. With the widespread use of CCR5 antagonists, drug resistance has gradually emerged. There are many reports about of drug-related failure in vivo and in vitro. Therefore, this review summarizes the mechanism of CCR5-mediated HIV-1 infection, the research progress in maraviroc and other CCR5 antagonists which have entered clinical trials and their drug resistance.

Article in English | WPRIM | ID: wpr-812288


AIM@#To evaluate the anti-HIV activity and mechanism of action of wikstroelide M, a daphnane diterpene from Daphne acutiloba Rehder (Thymelaeaceae).@*METHODS@#The anti-HIV activities of wikstroelide M against different HIV strains were evaluated by cytopathic effect assay and p24 quantification assay with ELISA. The inhibitory effect of wikstroelide M on HIV reverse transcription was analyzed by real-time PCR and ELISA. The effect of wikstroelide M on HIV-1 integrase nuclear translocation was observed with a cell-based imaging assay. The effect of wikstroelide M on LEDGF/p75-IN interaction was assayed by molecular docking.@*RESULTS@#Wikstroelide M potently inhibited different HIV-1 strains, including HIV-1IIIB, HIV-1A17, and HIV-19495, induced a cytopathic effect, with EC50 values ranging from 3.81 to 15.65 ng·mL⁻¹. Wikstroelide M also had high inhibitory activities against HIV-2ROD and HIV-2CBL-20-induced cytopathic effects with EC50 values of 18.88 and 31.90 ng·mL⁻¹. The inhibitory activities of wikstroelide M on the three HIV-1 strains were further confirmed by p24 quantification assay, with EC50 values ranging from 15.16 to 35.57 ng·mL⁻¹. Wikstroelide M also potently inhibited HIV-1IIIB induced cytolysis in MT-4 cells, with an EC50 value of 9.60 ng·mL⁻¹. The mechanistic assay showed that wikstroelide M targeted HIV-1 reverse transcriptase and nuclear translocation of integrase through disrupting the interaction between integrase and LEDGF/p75.@*CONCLUSION@#Wikstroelide M may be a potent HIV-1 and HIV-2 inhibitor, the mechanisms of action may include inhibition of reverse trascriptase activity and inhibition of integrase nuclear translocation through disrupting the interaction between integrase and LEDGF/p75.

Anti-HIV Agents , Pharmacology , Therapeutic Uses , Cell Line , Daphne , Chemistry , Diterpenes , Pharmacology , HIV Infections , Drug Therapy , Virology , HIV Integrase , Metabolism , HIV Integrase Inhibitors , Pharmacology , Therapeutic Uses , HIV Reverse Transcriptase , HIV-1 , HIV-2 , Humans , Intercellular Signaling Peptides and Proteins , Metabolism , Phytotherapy , Plant Extracts , Pharmacology , Therapeutic Uses , Virus Integration , Virus Replication